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1. INTRODUCTION 

The role of the environmental engineers is to remove pollutants fi-om three 

spheres of the world, water, air and soil. One of their primary duties is to provide 

society with safe (from a public health standpoint) and aesthetically pleasing water. 

They mainly depend on two sources of water supply for potable and other uses. These 

are surface water sources and ground water sources. Surface water sources are usually 

contaminated by particulates (clay and silt particles) and other chemical and biological 

contaminants (humic acids, fiilvic acids, color causing compounds, bacteria, viruses, 

fungi, algae etc.). Most of the chemical or biological contaminants mentioned above are 

often associated with the particulates (Lawler et al., 1980). That is why removal of 

particulates is the first and prime concern of environmental engineers in the production 

of a safe water supply. 

Particles with a size near 1 ^m are problematic because they can not be removed 

easily by simple physical methods, such as, sedimentation and filtration. Yao et al. 

(1971) illustrated that removal efficiency of particles in a granular media filter is 

minimum for particles with size near 1 |im. The particles much smaller than l^m will 

be transported to the filter media for removal by Brownian motion and particles much 

larger than 1 jim will be transported to the filter media or to the bottom of the tank by 

gravity and/or inertial forces. Particles near the size range of 1 |j,m can not be removed 

by either means with reasonable cost benefit ratio. These particles and smaller particles 

are kinetically stable and are often called colloids and/or primary particles. 
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The coagulation-flocculation process comes into the picture for taking care of 

those kinetically stable particles. The whole process of coagulation-flocculation is 

divided into two parts; rapid mixing and flocculation. The principal aim of the rapid 

mixing step is to disperse the coagulants uniformly and quickly so as to cause 

destabilization of primary particles. Four distinct mechanisms can cause particle 

destabilization such as, compression of double layer, adsorption to produce charge 

neutralization, enmeshment in a precipitate or sweep flocculation, and adsorption to 

permit interparticle bridging. Charge neutralization and sweep flocculation are the two 

predominant mechanisms associated with the destabilization of particulates by metal 

coagulants. 

Flocculation is the formation of aggregates, i.e., floe, by transport of the 

particles to cause collision and growth. Collisions among particles can be caused by 

three well defined mechanisms, such as, brownian or perikinetic flocculation due to the 

thermal energy of the fluid, velocity gradient or orthokinetic flocculation due to bulk 

fluid motion and differential settling due to a larger particle overtaking and colliding 

with a slower settling particle. The velocity gradient or the orthokinetic flocculation is 

the prime interest of the environmental engineers for both research and practical 

applications. 

The process of orthokinetic flocculation, because of its physical nature, should be 

studied predominantly from a hydrodynamic/ fluid mechanics standpoint. Rapid mixing 

on the other hand is a physico-chemical phenomenon and needs to be studied from a 

joint chemical and hydrodynamics standpoint. Often times, the influence of mixing is 
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overshadowed by chemical overdosing in practical water treatment plants. Cleasby et al. 

(1989) surveyed 21 surface water treatment plants. Among those 21, eighteen used alum 

as coagulant. Most of those alum treatment plants used a dose above 10 mg/1 as dry 

alum (as Al2(S04)3.14H20, molecular weight about 600 gm/mole) for a pH range of 7.2 

to 8.6. Some used as high as 50 mg/1 as dry alum. In addition to that, they used organic 

polymers as flocculation and/or filter aid chemicals. So any inefficiency of mixing 

during the coagulation-flocculation process was compensated by those heavy arsenal of 

chemicals for overall process performance. 

Most of the researchers in the coagulation arena have engaged themselves in 

unraveling the mystery of chemistry in coagulation. They tried to show the behavior of 

coagulant ions during coagulation with or without the presence of other ions. Very little 

research has been performed involving the hydrodynamic aspects of mixing in the 

coagulation-flocculation process. Some researchers in environmental engineering have 

shown in isolated studies that both rapid and slow mixing stages are important to the 

coagulation-flocculation process in water treatment. But most of them have failed to 

comprehend a global picture of mixing associated v^th the coagulation and flocculation 

process due to a general lack of understanding of the phenomenon of turbulent flow of 

fluid and its influence on chemical reactions and particle transport. 

Recently, advances in the theory of fluid mixing, turbulent flows in various 

reactors and mixing udth fast chemical reactions in turbulent flows have provided some 

material that can be used to construct a conceptual model which combines the chemical 

and hydrodynamic aspects of the coagulation-flocculation process. Attempts will be 
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made in this study to achieve better understanding of chemical and physical phenomena 

which underlie the processes of mixing, colloid destabilization and flocculation. Efforts 

will be made to illustrate experimentally the various aspects of mixing involved in a 

coagulation flocculation process. 
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2. OBJECTIVES 

Mixing in the coagulation-flocculation process can be varied in two different ways; first, 

by changing the mixing equipment and second, by changing the mixing pattern. Thus 

the prime objective of this study was to investigate and determine the effect of different 

mixing devices and patterns on the kinetics of flocculating kaolin clay suspension at 

both warm and cold water temperatures using metal coagulants under a number of 

physico-chemical conditions. In addition, attempts have been made to understand various 

aspects of the coagulation-flocculation process, such as, colloid, colloid stability, 

destabilization, aggregation, flocculation modeling, etc. Thus the specific objectives of 

this study can be stated as follows: 

1. Understand the general behavior of the colloids. 

2. Understand the general behavior of the metal coagulants in water and their 

interaction with colloids. 

3. Define and understand the process of mixing and its influence on fast 

chemical reactions. 

4. Study the phenomena of turbulent flow and determine its effect on mixing, 

fast chemical reactions and particle transport. 

5. Study the effects of various rapid mixing variables (e.g., intensity, pattern, 

coagulant injection type, concentration of dosing solution etc.) 

6. Study the effects of various slow mixing variables (e.g., intensity, constant 

intensity or tapered intensity). 
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7. Based on flow patterns, construct various types of mixing devices (impellers) 

and compare their effects during both rapid mixing and flocculation on the 

kinetics of the process. 

Objectives 1 through 4 were accomplished by a thorough review of the literature 

pertaining to those areas and objectives 5 through 7 were accomplished by detailed 

experimental investigations in the laboratory. The flocculation experiments were 

performed in a bench scale batch reactor inside a walk-in constant temperature room. 

Impeller performance was judged on constant power input which was calculated based 

on measured torque. All the variables chosen for experimental studies were based on 

extensive literature review and their effects have been explained theoretically based on 

the information available in the literature. Some mathematical modeling of flocculation 

has been reviewed in order to understand the two directions of flocculation (growth of 

particles and their breakup). 

This study made no attempt to address: 

• The effect of various mixing variables on flocculation kinetics in a continuous 

flow flocculator. 

• The issue of mathematical model development for the overall process of 

coagulation and flocculation. 
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3. LITERATURE REVIEW 

3.1 General 

Coagulation-flocculation is the first step of the three-step process for solid-liquid 

separation used in water and wastewater treatment. The performance of the 

sedimentation and filtration is very much dependent on the performance of this first 

step. Particles which are to be flocculated may initially be very small and fall in the 

colloidal range, i.e. 0.003 to 5 mm,which are distributed in a liquid suspension 

homogeneously and isotropically. These small particles are stable in colloidal sense, that 

is, given a long time, they would not aggregate into larger particles. Electrostatic 

repulsion induced by a negative charge on the particles causes this particle stability in a 

natural system. 

The purpose of coagulation and flocculation is to destabilize these stable particles 

and then cause the individual primary particles to stick together and form aggregates 

(floe). This destabilization of primary particles is usually achieved by adding a small 

amount of positively charged material, called the coagulant, to the suspension. 

Depending on the amount added, this coagulant either reduces or eliminates nearly all of 

the electrostatic repulsion between the particles by adsorbing onto the surface of the 

particles. Intense mixing is required while coagulant is added, to prevent nonuniform 

distribution of coagulant in the suspension. This intense mixing is termed as rapid 

mixing which is fully turbulent in nature. 
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Flocculation can then be achieved in a turbulent flow field created by paddle 

mixer in the reactor to bring these destabilized particles closer and the van der Waals 

attractive force acts to stick the particles together and to form floes. This stage of 

mixing is called slow mixing or velocity gradient flocculation. 

From the above discussions, it is clear that mixing, turbulence, chemical reaction 

and flocculation kinetics are the four major topics that need to be reviewed. The 

literature concerning each of these four areas will be discussed in this chapter. Before 

discussing the above mentioned four venues of this literature review, the colloid and 

colloidal stability that are often found in a natural water will be discussed first. 

3.2 CoUoids 

3.2.1. Introduction 

The International Union of Pure and Applied Chemistry (lUPAC) defines a 

colloid as any material for which one or more of its three dimensions lie within the 

range of 1-1000 nm (Hirtzel and Rajagopalan, 1985). Figure 3.1 shows the size 

spectrum of particles found in water. Relatively large contact area between the dispersed 

particles and the dispersion medium as well as the significant energy associated with 

creating and maintaining that interface are the two most fundamental distinguishing 

features of all colloidal systems. The Tyndal effect, i.e. ability to scatter light, is another 

distinguishing characteristic displayed by colloids (Edzwald, 1981 and Hunter, 1987). 

True solutions scatter very little light. The scattering pattern of colloidal dispersions 
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depends very strongly on the particle size and the wavelength of the light (Hunter, 

1987). 

According to Kavanaugh and Leckie (1980), the size spectrum of particulates in 

water extends from colloidal humic substances, 1 nm in size to large aggregates such as 

fecal pellets or marine snow with sizes up to 10"^ m (10 mm), covering about 6-7 orders 

of magnitude. The distribution of shapes, densities, surface chemical properties and 

chemical composition may vary widely with size, making the complete characterization 

of a given water sample fairly difficult (Montgomery, 1985; and Kavanaugh and Leckie, 

1980). 

Environmental Engineers use a fairly simple measure of the presence of colloids 

in water. They measure turbidity, which is an easily determined and practically useful 

parameter by which a gross measure of the colloidal content of a water can be made. 

Very small particles v^ath maximum dimension less than about 0.1 ^m scatter very little 

visible light. Therefore, a water containing asbestos fibers, viruses, or humic substances 

have lower turbidity with a larger particle number concentration when compared with 

larger particles such as clay or plankton. Clay and plankton have particle diameters 

close to wavelength of visible light, scatter light more effectively and thereby, yield 

higher turbidities (Edzwald, 1981). 

Based on these facts, turbidity is used as a surrogate measure of colloidal particle 

concentration and turbidity removal indicates the removal of such particulate 

contaminants of near micron size from water. But it has to be remembered that very low 

turbidity does not necessarily mean low total particle concentrations. It simply means 
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that the water does not have many particulates of a near micron size. It may still have 

large count of sub-micron particles. In recent years attempts have been made to measure 

the total number and to characterize the size distribution of particles in water 

suspension. One such attempt was made by Hanson and Cleasby (1990). They counted 

the number of particles of clay suspensions and classified the size ranges with a fair 

amount of accuracy down to about 0.7 mm using an Automatic Image Analyzer (AIA). 

3.2.2. Colloidal interactions 

When two particles approach each other, several types of interparticle forces 

come into play which may have a major effect on the flocculation process. These 

interparticle forces include van der Waals attractive forces, electrostatic repulsive forces, 

hydrodynamic repulsive forces, solvation repulsive forces, and steric repulsive forces. 

The flocculation process is influenced by colloid interactions in two different but related 

ways. First, colloid interactions have a direct effect on the collision efficiency, the 

probability of a pair of colliding particles to form aggregate. If there is strong repulsion 

between the particles, then the chance of aggregate formation will be very low and the 

flocculation will occur very slowly, if at all. One of the principal objectives of the 

coagulation (i.e. destabilization) process is to either reduce or eliminate this interparticle 

repulsion. The other aspect of colloid interactions is their effect on the strength of 

aggregates, which is much less understood but of great practical importance (Gregory, 

1989). 

Colloidal interactions are highly complex and depend on many physical and 
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chemical, and in some cases, biological factors. The properties that are of primary 

significance in determining the nature of these interactions and their outcome are as 

follows (Hirtzel and Rajagopalan, 1985): 

1. The size and shape of the particle. 

2. The chemical and electrical properties, such as, charge and charge distribution of the 

particle surface. 

3. The interactions of the particle with other particles and with the solvent and finally 

4. Particle size distribution in the solvent. 

Based on their interactions with the solvent, colloidal dispersions can be 

classified as being lyophiIic(solvent loving) or hydrophilic when solvent is water and 

lyophobic (solvent hating) or hydrophobic when solvent is water. Table 3.1 (Hunter, 

1987) shows some of the properties of both kinds of colloids. 

The role of surface area in colloid chemistry is very important, particularly in 

determining the differences in behavior of both lyophilic and lyophobic colloids. One 

contributing factor to these differences is the extent to which the dispersion medium is 

able to interact with the atoms of the suspended particles. When solvent comes in 

contact with all or most of the atoms of the dispersed phase, then the solvation energy 

will be important and the colloid should be lyophilic in some suitable solvent. But when 

solvent is prevented, by the structure of the suspended particle, from coming in contact 

with any but a small fraction of the atoms of those particles then the colloid will almost 

certainly be lyophobic in its behavior, even if the surface atoms interact strongly with 

the solvent. 
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Table 3,1. Lyophilic and Lyophobic Colloids (Hunter, 1987) 

Lyophilic Lyophobic 
0 High concentrations of 0 Only low concentrations of 
disperse phase frequently disperse phase stable". 
stable. 
0 Unaffected by small amounts 0 Very easily precipitated by 
of electrolytes. 'Salted out electrolytes. 
by large amounts. 
0 Stable to prolonged 0 Unstable on prolonged 
dialysis^. dialysis'^ (due to removal of 

the small amount of -
electrolyte necessary for 
stabilization). 

0 Residue after desiccation 0 Irreversibly coagulated,on 
will take up dispersion desiccation. 
medium spontaneously. 
0 Coagulation gives a gel or 0 Coagulation gives definite 
jelly. granules''. 
0 Usually give a weak Tyndall 0 Very marked light scattering 
beam. and Tyndall beam. 
0 Surface tension generally 0 Surface tension not 
lower than dispersion affected. 
medium. 
0 Viscosity frequently much 0 Viscosity only slightly 
higher than that of medium. increased*. 

'This is no longer true, especially if one allows the possibility of an adsorbed 
stabilizing layer of lyophilic material 

^Dialysis refers to a membrane filtration technique for separating colloidal par-

*^^^%^e%'™tEifis^no^tme'^of^6phobic sols with dissociable ioxiic surface groups 
attached. 

"Except for concentrated systems. 
'This is true only for dilute, tiablt sols with more or less spherical particles. 
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The different interactions of these two types of colloids with the solvent 

determine the nature of stability of these colloids. Lyophilic colloids are soluble in 

solvent. Because of their solubility, these colloids are thermodynamically stable and they 

can be induced to aggregate or precipitate only by changing the solvency conditions, 

i.e., by changing the temperature or by adding large quantities of inorganic salts 

("salting out"). These types of colloids consist of water-soluble macromolecules such as 

starches, proteins, and many others. Although these are in true solution, their size gives 

them some properties of dispersed particles or colloids (Gregory, 1989). In water, 

hydrophilic particulates are primarily of organic origin and include a wdde variety of 

bio-colloids (humic and fiilvic acids, viruses etc.) and suspended living or dead 

microorganisms (bacteria, algae, etc.) (Edzwald, 1981). 

On the other hand lyophobic colloids consist of less soluble materials which 

exist in a finely divided state. These colloids are not stable in a thermodynamic sense, 

but may be kinetically stable because of interparticle repulsion. In most cases the 

repulsion is electrical in nature, since the great majority of aqueous colloids are 

negatively charged (Gregory, 1989). Hydrophobic particulates are primarily of an 

inorganic origin and include some clay particles and non-hydrated metal oxides 

(Montgomery, 1985). 

3.2.3. Dynamics of a colloidal system 

In order to understand the behavior of a colloidal system, it is necessary to 

observe the fundamental forces that govern the actions of lyophobic colloidal particles. 
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In the water industry, the term hydrophobic is frequently applied to clays, and implies 

that clay materials do not dissolve and remain thermodynamically unstable. But the 

forces that make the clay kinetically stable are as follows: 

1. Electrostatic repulsion (double-layer forces): Most particles in aqueous systems are 

charged for various reasons, e.g., surface ionization, specific ion adsorption etc. 

(Gregory, 1989). Kaolin clay has a net negative surface charge of 0.15 to 0.20 C/m^ 

where C is coulombs and m is meter (Hanson, 1989). Because of this net surface 

charge, a layer of counter ions is developed surrounding the particle. This distribution of 

ions around the charged particle is not uniform and creates an electrical double layer. 

The combination of the surface charge on the particles and the sum of the counter-ion 

region around the particle develop an electrically neutral system. That is why, a 

colloidal suspension does not have a net electrical charge. The inner layer of the double-

layer is called stem layer, which is comparatively rigid, attached to particle surface and 

contains mainly the charge opposite to particle charge. The density of opposite charge is 

very high in this layer, and the thickness of this layer is much less compared to that of 

the outer layer. The outer plane of stem layer is called the slipping plane or the plane of 

shear. The outer layer is called the diffuse layer and contains mostly the same charge as 

the particle and some opposite charge. The density of charge is much less in this layer 

and the thickness is much higher than the stem layer thickness. This layer results from 

electrostatic attraction of counterions to the particle, electrostatic repulsion of ions of the 

same charge as the particle (similions), and thermal or molecular diffusion that acts 

against the concentration gradients produced by electrostatic effects to evenly distribute 
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the ions. Figure 3.2 shows schematically a negatively charged colloidal particle with a 

cloud of ions (double-layer) around the particle (Amirtharajah and O'Melia, 1990). 

When a voltage is applied across a suspension, the potential that causes the 

motion of the particles is called the zeta potential or electrokinetic potential which is 

developed at the plane of shear, between a particle and a fluid, when there is a relative 

motion between them. Figure 3.2 also shows the location of zeta potential plane. Zeta 

potential and other parameters such as streaming current measurements are indirect 

measures of particle charge. Zeta potential has the maximum value at the plane of shear 

and decreases with distance from the surface. This decrease is effected by the 

characteristics of the double layer and by the type and concentration of ions in the bulk 

solution. Zeta potential is often expressed in millivolt (mv) and Bennett and Hulbert 

(1986) have suggested that a zeta potential on the order of 20-30 mv is the "critical zeta 

potential", which needs to be exceeded in absolute value if the particle suspension is to 

be stable. Figure 3.3 (Zeta Meter, Inc., see page 16 please) shows the relative stability 

of particle systems at different zeta potential. 

When two charged particles approach each other, their diffuse layers overlap and 

begin to interact. In the case of identical particles, the electrostatic interaction between 

the particles results in a repulsive force between them. A repulsive potential energy Tr 

is produced that increases as the distance separating the particles decreases. These 

repulsive interactions are shown in Figure 3.4 c and d (Amirtharajah and O'Melia, 

1990). This energy acts as a barrier for particle contact. 

2. Attractive forces: London-van der Waals attractive forces are very important and 
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probably the only kind of attractive force existent in a coagulation-flocculation process. 

They arise from dipole interactions, either permanent or induced, in the atoms 

comprising the colloidal particles and water. Although the strength of these forces is 

small compared to the forces developed by a chemical bond, as seen in Table 3.2, these 

forces are strong enough to cause irreversible flocculation under some conditions. 

Table 3.2. Relative bond strength of different types of bond. 

Bond Type Strength (KJ/mole) 

(Israelachvili, 1985) (Camp, 1968) 

Co-valent 
Hydrogen 
Van der Waals 

500 210-420 
10-40 12-42 
1 4-8 

Based on quantum mechanical perturbation theory, London in 1930, derived an 

expression for the interaction energy between two identical atoms as follows 

(Israelachvili, 1985): 

W(r) = [(-3/4)ot2hv)]/[(4nejV] = -Cyjr^ 3.1 

a = Electronic polarizability of second atom (CWJ"') 

h = Plank's constant; 6.626x10"''* J.s 

V = Orbiting frequency of electron, which for the Bohr atom is 3.3x10'' sec"'. In the 

simplest Bohr atom, electron orbits a proton, and there is no permanent dipole moment. 

However an instantaneous dipole of moment whose field will polarize a nearby neutral 
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atom giving rise to an attractive interaction will exist at any instant (Israelachvili, 1985). 

e„ = Permittivity of free space (C^J''m'') 

r = Separation distance of the atoms (m) 

W(r) = London dispersion interaction free energy (J). 

C = Coulombs 

C,j = A constant 

The main intention of the introduction of this expression is to show that the interaction 

energy of two identical, single atoms, the attractive energy varies inversely with the 

sixth power of the intermolecular distance. This analysis of London has two limiting 

ends: (i) very large separation distance between attracting molecules or atoms and (ii) 

very small separation distance between attracting molecules or atoms. The expression is 

not accurate in the above two cases. Two different quantitative theories for London-van 

der Waals interaction between two macroscopic bodies were proposed by Hamaker and 

later by Lifshitz. 

The interaction potential between two bodies is the summed or integrated 

interactive energies of all of the atoms in one body with all of the atoms in a second 

body. This summed interaction is material and geometry specific. For a flat geometry 

the equation for van der Waals attraction is given by (Hanson, 1989): 

<D= {-A/(12Ji)}{(l/d2)+l/(d+25)'-2/(d+25)^} 3.2 

O = van der Waals attraction for infinite flat plate (J m'^) 

A = Hamaker's constant (J) 

d = plate separation distance (m) 
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5 = plate thickness (m) 

The parameter "A" is material specific and has been named after H. C. Hamaker, who 

did much of the original work in this area. The expression for the constant A for two 

identical materials interacting across a third can be given as follows (Israelachvili, 

1985): 

A=(3/4)KT[(e,-63)7(8,+e3)]2+[(3hv,)/16v2]*[(n,̂ -n3 )̂v(n,̂ +n3 )̂3'̂ ] 

Ve = adsorption frequency (s"') 

n; = refractive index of material i 

Ej = dielectric permittivity of material i 

K = Boltzman's constant (J/^K) 

T = absolute temperature (°K) 

h = Planck's constant, defined earlier. 

Frequently the constant "A" is written as A,23 meaning that Hamaker's constant 

for materials 1 and 2 acting across material 3. In case of colloid stability and 

flocculation, materials 1 and 2 are colloids and material 3 is the liquid medium. 

Hamaker's constant is much affected by the presence of dissolved salts and is 

considerably reduced at high ionic strengths, essentially by a "damping effect" (Gregory, 

1989), but it is not sensitive to large temperature change. Practically for all aqueous 

dispersions, Hamaker's constant lies in the range (0.3 to 10) X 10'^° J. Dense mineral 

particles have values toward the upper end of the range, whereas low density, especially 

biological, materials have quite low values, and for materials with Hamaker's constants 

greater than about 10'^°J, the van der Waals interaction can be assumed to be 
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independent of ionic strength. 

The van der Waals potential energy is usually represented by and is 

schematically shown in Figure 3.4c and d. This energy acts against the repulsive 

energy to reduce the repulsive energy barrier and yields the net interaction energy 

between two colloids which is also shown in the above mentioned figures. 

3. Steric forces: These forces are usually generated in polymer added colloidal 

suspensions. When a suspension is overdosed by polymer, long-chain molecules of 

polymer adsorbed onto the particle surface repel each other, resulting in large 

interparticle forces. Figure 3.5 (Amirtharajah and O'Melia, 1990) shows the two 

processes that can produce a repulsion when two polymer-coated surfaces interact at 

close distances. First, the adsorbed layers can be compressed by collision, reducing the 

volume available for the adsorbed molecules. This volume reduction restricts the 

Compression Interpenetration 

Figure 3.5. Two possible repulsive interactions of adsorbed polymer layers in 
sterically stabilized colloidal systems (Gregory, 1978) 
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polymer movement and causes the repulsion between the particles. Second, when the 

two polymer-coated particles collide and polymer tails interpenetrate, increasing the 

polymer concentration in overlapped region, a strong hydrophilic action of extended 

polymer sections leads to repulsion. Natural organic materials such as humic substances 

are common in water supplies. They are anionic polyelectrolytes, adsorb at interfaces, 

can be surface active and may contribute to particle stability by steric effects 

(Amirtharajah and O'Melia, 1990). 

4. Solvation forces: These forces result from the changes in the local arrangement of 

molecules (solvent structure) near a surface or interface. These are strong repulsive 

forces acting over a very short distance range, i.e., under 1 to 3 nm and may dominate 

over both electrostatic repulsion and van der Waals-London forces for small separation 

distances between the particles or surfaces, but they do not contribute significantly to 

the long range tail of forces (Israelachvili, 1985). Figure 3.6 (Israelachvili, 1985), 

shown on page 23, is the illustration of the variation of solvation forces as two particles 

or surfaces approach. Sigma(o) in this figure is the incremental change of separation 

distance between two surfaces corresponding to the period exhibited by the pressure 

fluctuation (oscillation) shown in Figure 3.6b. As seen form Figure 3.6b, the solvation 

force becomes significant when the separation distance between two particles equals 

sigma. As a result, the density of the solvent also changes radically within this 

separation distance. Sigma is material specific and has different values for different 

solvents. For water, sigma has a value of 0.25 nm. Since both e and n of the Hamaker's 

constant depend on density of solvent (p), Hamaker's constant (A) is also influenced by 
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the solvation forces. So oscillatory solvation forces are often thought of as van der 

Waals forces at small separation distances with the molecular properties of the liquid 

taken into account (Hanson, 1989). 

5. Born repulsion: This repulsion is caused by the overlapping of electron clouds as the 

particles approach each other on a molecular scale. This force is difficult to distinguish 

from other forces and may not be active in an aqueous system, because of the solvation 

forces. 

Attractive 

Repulsive 

Figure 3.6. Structuial changes in a liquid as two surfaces approach; (a) the 
molecular ordering of water at the surface changes as the separation 
distance D changes. The density of liquid molecules in contact with the 
surfaces varies between maxima and minima, a = 0.2S nm for water, (b) 
corresponding solvation pressure (Israelachvili, 1985) 
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3 J Destabilization of Colloids 

3 J.l. General 

As mentioned earlier, like particles of lyophobic colloids are thermodynamically 

unstable and have a tendency to lump together. But the particles are kinetically stable 

because of several interacting forces, and are prevented from colliding with each other. 

Although four or five different forces are found responsible for this kinetic stability, two 

among them (electrostatic repulsion and van der Waals attraction) are the most 

important. As shown in Figure3.4c and d, these two forces create a resulting energy 

barrier that prevents the particles from colliding and sticking together. There is nothing 

that can be done to increase the attractive force of the system. Thus, if one desires to 

decrease the stability (or energy barrier) of a colloidal suspension, it is necessary to 

reduce the repulsive forces. The repulsive portion of the curve is a function of surface 

charge and solution chemistry. In the water treatment field, the surface charge is usually 

modified. If we reduce or eliminate the surface charge, the barrier to flocculation is 

reduced or eliminated. This reduction of the barrier to flocculation is called 

destabilization and can be achieved in several ways discussed in the following 

paragraphs. 

3.3.2. Adsorption and charge neutralization (A/D) 

This is also called coagulation by potential control. In this process, the surface 

charge of particles are altered by adsorption of counterions from the coagulant chemical, 
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reducing the net charge on the particle surface, thereby reducing the repulsive energy 

barrier and encouraging rapid coagulation. If this process of charge reduction on the 

particle surface is continued to a limit, either by coagulant chemical addition at a 

particular pH or by the pH adjustment at a particular coagulant dose, where the electric 

charge on the particles is actually zero, the state is referred to as the point of zero 

charge (pzc) for that colloid. If the process is continued further, restabilization of 

colloids can take place and colloids again become kinetically stable. Metal coagulants 

like alum and ferric salts display such coagulation properties at specific pH levels and 

are used in destabilization of colloids in water treatment operations (Benefield et al., 

1982; Hunter, 1987; and O'Melia, 1972). 

The extent of adsorption, and hence, the destabilization capacity of coagulants 

depends on the chemical structure, the presence of certain functional groups, and the 

degree of hydration of coagulants. Polyvalent hydrolyzed metal ions are much more 

efficient in adsorption on colloidal surfaces than monovalent or unhydrolyzed ions. 

According to Stumm and Morgan (1981) the predominant adsorbable species are 

polynuclear compounds such as Al8(OH)2o''^ or Al6(OH),2''*. Preformed iron coagulants, 

containing large portion of highly charged polymeric species are readily adsorbed on 

particles and neutralize their negative charge strongly (Tang and Stumm, 1987). 

Stumm and Morgan (1981) proposed that hydrolysis increases the adsorption 

tendency of the Al complex by making it more hydrophobic. This can be done by 

reducing the effective charge of the center ion or ions and hence decreasing the 

interaction between the central Al atom and the remaining peripheral aqua groups 
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(ligands). As a result a covalent bond is produced between the hydrolyzed Al ion and 

specific sites on the solid surface by reducing the energy necessary to displace water 

molecules from the coordination sheath around the Al ions. Also, ion-solvent 

interactions present an energy barrier to close approach of highly charged ions to the 

interface between a low dielectric constant solid ( e.g., kaolinite and SiOz) and water 

(James and Healy, 1972c). When the ionic charge is lowered by hydrolysis, the ion-

solvent interaction is decreased lowering the energy barrier. The ions then approach 

closer to the interface which results in greater coulombic and short-range interaction 

energies, that are more favorable to adsorption. 

Matijevic and Kolak (1967) observed, in a study of coagulation of lyophobic 

colloids by metal chelates, that hydration alone is not the only factor influencing the 

absorbability of complex ions. They found that similar metal chelates (i.e., Co(en)3'^ and 

Cr(en)3^^, which have different metal centers, but same organic ligand (ethylene-

diamine) and net charge) exert very different destabilizing effects. The central metal ion 

influences the distribution of electrons in the ligands and also the specific chemical 

groups of the ligand affecting the adsorption capacity of the chelate at the colloid 

surface. Since work is required to remove the hydration layer of an adsorbing ion, the 

more hydrated an ion, the less it adsorbs. 

James and Healy (1972a) showed a relationship between adsorption of 

hydrolyzed cobalt ions on silica and pH. The fractional adsorption of Co(II) on silica is 

low at lower pH range (1 to 5) where cobalt is present entirely as Co^""; the adsorption 

then increases sharply and free Co^"" decreases rapidly in the pH range 6.5 to 8.0 and the 
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predominant cobalt species become the adsorbable hydroxo cobalt(II) complexes 

(CoOH"^ and Co(OH)2). Therefore there is a qualitative correlation of the pH of abrupt 

increase in adsorption with hydrolysis. James and Healy (1972c) proposed that the delay 

in adsorption is due to the large change in solvation energy contribution that opposes 

the coulombic and specific interactions. When the solvation energy is lowered by 

increasing the lower charged hydrolysis products as the pH increases, adsorption also 

increases. This abrupt change in adsorption capacity within a short pH range is a 

characteristic of the most metal ions used as coagulants. There is a range of 1 to 2 pH 

units where the extent of adsorption rises from 0% to almost 100%. James and Healy 

(1972c) also postulated that the adsorption of metal ions on the silica surface occurs 

when the solution conditions are suitable for some hydrolysis of a particular metal ion. 

Using measured 0H:A1 ratios and residual aluminum concentrations, Dentel and 

Gossett (1988) indicated that destabilization by adsorption is brought about by 

precipitation of positively charged aluminum hydroxide on to the original particle 

surfaces. James and Healy (1972b) also presented similar evidence which indicates that 

the adsorption of hydrolysis products leads to the formation of a layer or a partial layer 

(depending on the amount of aluminum, hydrogen ion, Al-complexing ligands, etc., in 

the system) of amorphous hydroxide precipitate on the particle surface. They concluded 

that this results from a lowered stability of the precipitate at the surface caused by the 

interfacial electrical field and they referred to this as surface nucleation or precipitation. 

An approximate stoichiometric relationship is usually observed between coagulant dose 

and the surface area of the colloid for an adsorptive interaction, in which, a certain 
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fractional coverage of the particle surface has to be achieved to produce optimum 

coagulation. Beyond that coverage particles may tend toward restabilization and 

coagulation efficiency may be lowered. 

3.3.3. Double layer compression 

If someone adds to the colloidal suspension an "indifferent electrolyte" whose 

ions enjoy no special relationship with the surface (like adsorption), have no chemical 

characteristics in coagulation such as hydrolysis and act as point charge, the presence of 

these added counterions results in a smaller diffuse layer surrounding the particles. High 

concentration of such electrolytes in solution produce correspondingly high 

concentrations of counterions in the diffuse layer simply following the electrostatic rule; 

ions of similar charge to the primary charge of the colloid are repelled and counterions 

are attracted. The volume of the diffuse layer necessary to maintain electroneutrality is 

reduced, and the effective thickness of the diffuse layer is reduced correspondingly. As 

a result the distance between the repelling colloidal particles decreases, the attractive 

van der Waals interaction can dominate at all separations, the energy barrier can 

disappear, and electrostatic stabilization can be eliminated. 

In 1900, Hardy summarized the results of the use of such electrolytes as 

coagulant in the Schulze-Hardy rule, which states that the destabilization of colloid by 

an indifferent electrolyte is brought about by ions of opposite charge to the colloid and 

that the coagulation effectiveness of the ions increases significantiy with ion charge. For 

example, the concentrations of Na^, Ca^*, and Al'^ required to destabilize a negative 
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colloid are observed to vary about in the ratio of 1:(1/100):(1/1000) (Amirtharajah and 

O'Melia, 1990). This destabilization mechanism is of limited interest to the people 

concerned with coagulation in potable water treatment systems. Usually coagulants used 

in water industry are not "indifferent electrolytes" and they undergo many and more 

important reactions in addition to electrostatic ones. One such reaction was discussed in 

the previous section. 

3.3.4. Enmeshment in a precipitate 

This mechanism can not be thought of as a pure "colloidal destabilization" 

method, but merely as a physical means of colloidal removal. Here metal coagulants 

such as aluminum and ferric salts are added, at the appropriate pH, to the water greatly 

in excess of their solubility in water to cause precipitation of a metal hydroxide [e.g., 

A1(0H)3(s) or Fe(0H)3(s). The colloidal particles serve as nuclei around which 

precipitation occurs, causing the enmeshment of the particles, which eventually settle 

out. These precipitates enmesh the particles as they grow and can also collide with the 

other particles later on (Amirtharajah and O'Melia, 1990). This process is referred to as 

"sweep floe" removal. 

Not just the oversaturation of the solutions by the metal coagulants, but some 

degree of supersaturation must be exceeded for rapid precipitation to cause "sweep 

floe". This critical supersaturation depends on several parameters, including temperature 

and the concentration of solid particles already present in the solution. This "sweep floe" 

mechanism is not stoichiometric, moreover the critical supersaturation necessary for 
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rapid precipitation could in fact decrease with increasing surface concentration, with 

colloidal particles providing interfaces for localized oversaturation (Stumm and O'Melia, 

1968). The rate of precipitation is also increased by the presence of certain anions in the 

solution. 

Heterocoagulation is another phenomenon in the sweep floe mechanism observed 

by Dentel and Gossett (1988), in which an additional possible removal mechanism is 

that the metal hydroxide first attains a solid state in solution and then heterocoagulates 

(collide with particles of different kind) vjnth the particulates in the water. In the 

treatment of low but objectionable concentrations of colloidal particles, sweep floe with 

high coagulant dosages where gelatinous metal hydroxide precipitates are produced 

rapidly can be effective, and is used in order to enhance flocculation kinetics. 

In low turbid water, particle aggregation is limited by the number of collisions or 

contact opportunities that exist in the suspension. High concentrations of rapidly formed 

precipitates increase the floe volume, enhance collision opportunities, and produce 

settleable floe. In typical water treatment practice under sweep floe conditions, water is 

supersaturated three to four orders of magnitude above the solubility of the metal to 

precipitate metal hydroxide in 1 to 7 seconds (AWWA Committee report, 1989). 

33.5. Adsorption and interparticle bridging 

This mechanism is observed in polymer coagulation. In coagulation wdth metal 

salt this phenomenon does not take place. When long-chain polymers with high 

molecular weight are added to a colloidal dispersion, polymers may adsorb on particles 
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at many points along the chain and also a single polymer molecule becomes attached to 

more than one particle. In that case particles are bridged together, in which polymer 

serves as a bridge. For effective bridging, the polymer needs to adsorb in such a way 

that a significant fraction of segment is not in contact with the surface of the particle, 

but extend some distance into the aqueous phase. Also adsorbed amount should not be 

too great, so that a significant fraction of the surface remains free of adsorbed polymer. 

As a result, contacts can occur between unoccupied areas of a particle surface and 

extended segments of chains adsorbed on other particles as shown in Figure Figure 3.7a 

(Gregory, 1989; and Amirtharajah and O'Melia, 1990). 

If polymer is added in excess amount and the excess is adsorbed onto the 

particle surface, bridging is prevented because of inadequate free particle surface for 

bridging contacts to occur and particles are restabilized by surface saturation and can be 

sterically stabilized as shown in Figure 3.7b (Gregory, 1989). That is why an "optimum 

dosage" of polymer is required to achieve good bridging flocculation and that dose is 

usually found to depend on particle concentration. 

3.4. Flocculation and Flocculation Models 

3.4.1. General 

Once the particles are destabilized by one or more of the mechanisms previously 

discussed, then those destabilized particles must be brought into contact with one 

another for aggregation to occur. This process is called flocculation and the starting 
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(a) (b) 

Figure 3.7. Schematic illustration of (a) bridging flocculation and (b) restabilization 
by excess adsorbed polymer (Gregory, 1989) 
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point for a discussion of flocculation kinetics is the classic work of Smoluchowski in 

1917. This work dealt with aggregation of micron-sized particles by Brownian motion 

and laminar shear and did not consider turbulent flocculation. Ernst (1986) gives the 

Smoluchowski flocculation kinetic equation in the following form; 

dn^dt = (l/2)[ZKijninj] - 3.3 

The term in the left hand side represents the rate of change of concentration of k-fold 

aggregates, where k=i+j, and variable n represents number concentration of particles. Kjj 

and Kfk are referred to as collision kernels (rate coefficients). Equation 3.3 represents the 

irreversible aggregation without any consideration of breakup of aggregates, which 

would require a third term on the right hand side. 

Above equation represents aggregation driven by two different mechanisms. 

First, particles collide from time to time due to differential thermal energy of the system 

and the mechanism is called Brownian motion or perikinetic flocculation. Second, fluid 

shear causes velocity gradients and particles follow the motion of suspending fluid 

resulting in interparticle contacts, and this is called orthokinetic flocculation. Other than 

these two, there is another mechanism which is called differential settling. All these 

three will be discussed in the following sections. 

3.4.2. Perikinetic flocculation 

If the particles are compact and the driving mechanism is Brownian motion the 

kernel in the Smoluchowski's equation is Kjj = 47rDij(ai+ a^), where Dij= (Dj+ Dj) is the 

combined diffusion coefficient for particles i and j. The variables aj and a, are the radii 
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of the colliding spheres. For diffiision coefficients, the Stokes-Einstein expression is 

used which is 0;= kT/(67cajH), where k is the Boltzmann's constant, T is the absolute 

temperature and n is the dynamic viscosity of the fluid. 

Upon substituting the values of Kjj and Dj in Equation 3.3, the discrete form of 

the equation results: 

dn^/dt = [kT/3fi][XRijninj- 2nk2:Rikni] 3.4 

The term Rjj= (3;+ ^)V(ajaj) represents the collision sphere of the interacting particles i 

and j. The first term represents particle growing out of the i and j classes into the k 

class. The second term represents particles growing out of the k class into some other 

class. 

The Smoluchowski treatment for this type of flocculation is based on the 

collision of spheres, in which, as the particle size increases, the diffusion coefficient 

decreases but the collision radius increases. These have opposing effects on the collision 

rate and for similar, equal size, particles, they balance exactly. This assumption is 

questionable in case of aggregates. Two colliding solid spheres must form a dumbbell 

shaped aggregate and, with higher order aggregates, many different shapes become 

possible as shown in Figure 3.8 (Gregory, 1989 ). The collision rate of such aggregates 

are likely to differ from those for spheres. Moreover, the effects of size on collision 

radius and the diffusion coefficient can not be expected to balance each other in the 

same way as monodisperse spheres. For a monodisperse suspension Equation 3.4 

assumes very simple size-independent form of collision rate constant as follows; 

-dni/dt = (4kT/3(i)nx' = kpU/ 3.5 
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Figure 3.8. Possible shapes of aggregate upto four fold (Gregory, 1989) 
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kp= 4kT/3|j is known as the flocculation rate constant and has a value of 6.13X10 '® 

m^s"', for aqueous dispersion at 25° C. Equation 3.5 results from Equation 3.4 for 

monodispersed suspension of spherical particles where ai= aj and ni= nj= n-r. For 

monodispersed suspension and at the beginning of the flocculation, two terms of 

Equation 3.4 collapse into one term. This time the equation was written in terms of the 

rate of change of the primary particles instead of some intermediate size particle. Rate 

constants determined experimentally for rapid flocculation of latex particles by 

Lichtenbelt et al. (1974) are about half of the value given by Equation 3.5. This 

reduction in rate is known to be a result of hydrodynamic interaction between 

approaching particles (Gregory, 1989). 

3.4J. Orthokinetic flocculation 

The second process of Smoluchowski treatment is the orthokinetic flocculation 

where particles are assumed to follow fluid streamlines (with velocity u) and the 

collision frequency depends on the size of the particles and on the velocity gradient 

(perpendicular to the flow direction, z) or shear rate. The flow is laminar with a 

constant velocity on a streamline. If the particles are compact and the driving 

mechanism is a laminar shear field, the kernel for Smoluchowski model is K4j= 

4/3(du/dz)Aij^ The shear gradient, du/dz, is also called the velocity gradient and is 

symbolized by G. Aij= (3;+ a^) is the collision radius for particles i and j. With this value 

of Kjj Equation 3.3 assumes the form for laminar shear flocculation as follows: 

dnfc/dt = (2G/3)[2(ai+ aj)'ninj - 22Xai+ 3.6 
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The first term represents particle growing into the k size class, and second term 

represents particles growing out of the k class into another size class. So as the time 

approaches infinity, all the particles will form a single macro-floc since there is no 

breakup term in the model. But in reality, the fioc will reach a maximum size and will 

break during flocculation due to the fluid motion. The maximiun size of the floe will be 

determined by the strength of particle bonds in the fioc and the stress exerted by the 

fluid motion. The breakup terms will assume the same form as the two terms just 

presented in Equation 3.6 except the sign on them will be opposite. That is, particles 

will be growing into the class size due to breakage of larger floe, and particles will be 

leaving the class size due to breakup to smaller floe (Hanson, 1989). 

For a monodisperse suspension the initial rate of decline of the total particle 

concentration, % due to orthokinetic flocculation can be derived from Eqxiation 3.6 as 

follows: 

-dni/dt = (16/3)Ga^nT^ = koUj^ 3.7 

Since ai= a^ and ni= nj= n-j. This expression makes it clear why fluid motion is effective 

in promoting collisions, especially for larger particles. The third power of the particle 

size dependence is in marked contrast to the perikinetic case. By comparing Equations 

3.5 and 3.7, the ratio of collision rate constants for early stages of ortho and perikinetic 

flocculation is given as k^/kp = 4G^a^/kT. For a shear rate of only 10s"' in aqueous 

dispersions at room temperature, the ratio is unity for a particle radius of about 0.5 |im. 

For larger particles and higher shear rates, the orthokinetic rate becomes much greater 

implying the need for fluid motion for flocculation (Gregory, 1989). 
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The above expressions from Smoluchowski's treatment are for laminar flow and 

can not be applied to turbulent flocculation. But there are several possible alternative 

approaches. An early attempt to treat flocculation in turbulent flow was made by Camp 

and Stein in 1943. They took Smoluchowski's solution for well defined laminar shear 

flow, and replaced the velocity gradient (du/dz) vidth a root mean square velocity 

gradient and called it rms velocity gradient G for the turbulent flow field. According to 

their formulation, the absolute velocity gradient at a point p is given as: 

Gp=[{(du/dy)+(dv/dx)}'+ {(du/dz)+(dw/dx)}^+ {(dv/dz)+(dw/dy)}']"' 3.8 

where u, v, and w are the velocity components in x, y, and z directions respectively. For 

a Newtonian fluid, this can be reduced to G=(e/\))"^, where e is the total energy 

dissipated per unit mass, and \) is the kinematic viscosity. This expression of G is then 

directly inserted into Smoluchowski's model for laminar shear flocculation to yield a 

model for turbulent flocculation (Hanson, 1989). 

The main problem with this model of Camp and Stein (1943) is that, it does not 

specifically include many important phenomena associated with the turbulent 

flocculation. Some of them are 

• eddy size distribution and the relationship between eddy size and the transport of floe 

of various sizes, 

• effect of coagulant chemistry and precipitate surface chemistry, 

• effect of coagulant and system chemistry on floe strength, 

• non-isotropic, non-homogeneous nature of the flow field (i.e., spatial variation in the 

flow field). 
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• mechanisms involved in breakup (surface erosion vs. fracture), and the dependence of 

the dominant breakup mechanism on floe size and flow field characteristics, 

• particle and floe size distribution are usually polydispersed and frequently multi-nodal, 

• particle and floe strength and hydrodynamic forces. 

Since these effects are not included explicitly in the model, they are all lumped 

together into whatever parameters are used to fit the model to the observed data. Many 

attempts have been made to improve Camp and Stein's generalization of Smoluchowski's 

model. 

Saffman and Turner (1956) developed a model for orthokinetic turbulent 

flocculation of rain drops in a cloud based on two assumptions: (1) the turbulent flow 

field was homogeneous and isotropic, which is an idealization with the turbulence 

independent of position and direction, and (2) the particles were small compared to the 

Kolmogorov microscale. This microscale approximately defines size of the eddies below 

which the energy is dissipated primarily by viscous effects (Amirtharajah and O'Melia, 

1990). This Kolmogorov microscale has been derived as (Tatterson, 1991). 

Safftnan and Turner's model is given as: 

Nij= 1.294ninj(ai+ aj)'G 3.9 

where Ny is the number of collisions per unit time per unit volume and other variables 

were defined previously. 

Even though their model was rigorously derived, it differed from that of Camp 

and Stein (1943) only by the value of the constant. The constants differ only by 5% 

(Camp and Stein's 1.333 to Saffman and Turner's 1.294); all the other variables in the 
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expression were exactly the same for two models. Based on their second assumption, 

the particles must meet the criteria shown in Table 3.3 at 25° C for the model to be 

valid (Hanson, 1989). 

Table 3.3. G-value and the corresponding limiting particle size for the Safftnan and 
Tumer model; this size is the Kolmogorov Microscale of turbulence 
(Hanson, 1989) 

G-value Limiting size in nm 

10 /sec 300 
50/sec 134 
100/sec 77 

In the water treatment industry, the flocculation energy is usually tapered from G 

value of 100 to 20s ' and the floe can easily be larger than the corresponding 

microscale. But the number of floes larger than microscale may not be high and may 

appear only at a considerable time after the start of flocculation. The primary particles 

found in water treatment are generally less than 10 nm and will fulfill these criteria. So 

this model has a broad region of applicability, before too large floes have been formed 

in the reactor. 

Delichatsios and Probstein (1975) theoretically derived kinetic models for 

orthokinetic flocculation in isotropic turbulent flow for two conditions where the radius 

of collision spheres is smaller than or greater than the Kolmogorov microscale. Their 

two models are given as follows; 

For viscous subrange i.e. (aj+ aj) < <Ti 



www.manaraa.com

42 

Nij= 0.408ninj(ai+ a^yG 3.10 

For inertia! subrange i.e., (ai+ a^) > > T| 

Nij= 2.152ninj(ai+ajfV" 3.11 

For the collision sphere smaller than the microscale, the equation was similar in the 

form to Safftnan and Turner's equation, except their constant was about one third of the 

Safftnan and Turner's constant. For collision sphere larger than the microscale their 

expression differed from that of Safftnan and Turner. Also their expression did not have 

any viscosity term implying that for the particles larger than microscale, the collision 

frequency is independent of viscosity. 

All the above mentioned turbulent flocculation models differ a bit from the 

original Smoluchowski model in the sense that these models estimates the number of 

collisions in a suspension at the beginning of flocculation where Smoluchowski's model 

expresses the rate of change of some intermediate size particles after some progression 

of flocculation. Thus the second term on the right hand side in Smoluchowski's model is 

absent in these turbulent models. 

Delichatsios and Probstein (1975) also compared theoretical flocculation rates for 

monodispersed and polydispersed suspensions with the same floe volumes, and showed 

that the polydisperseness results in a decrease in the flocculation rate. These authors did 

not include the differential sedimentation in polydispersed suspension which may 

question the validity of their results. 

By investigating the difference in treatment plant efficiency between 

monodispersed and polydispersed systems with the same floe volume, Lawler et al. 
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(1980) concluded that the process performance was worse for the homogeneous 

suspension than for the suspension with a broad particle size distribution. They 

performed a simulation type model assuming additivity of Brownian and shear 

flocculation. 

Hudson (1965) derived a model relating total particle reduction and floc volume 

as follows: 

n/n = 3.12 

V = volume of floc per unit volume of water 

<() = sticking factor 

n(,= suspended particle number originally present 

nT= free or unflocculated particle number at time "t". 

This model was developed based on Camp and Stein's work (1943) with the assumption 

that the diameter of the floes is so large that the primary particle diameter can be safely 

ignored in the mathematical analysis, i.e., dn„c > >dprinmiy so dp^^ = dn„. 

Argaman and Kaufman (1968 and 1970) also adopted the above mentioned assumption 

in deriving their flocculation model including breakup (will be discussed later). 

The above equation is similar to the integral form of Equation 3.7 with a sticking 

factor ()) and a volume fraction V=4jta^nTy3 inserted into it before integration. The above 

form also shows that the rate of entrapment of suspended particles in floes is depended 

upon the volume of the floc, not on the number or size of the particles. This assumption 

of very large floc diameter compared to the primary particle appears to produce good 

agreement with experimental results for flocculation in the "sweep floc" region. In this 
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region, large metal hydroxide precipitates form early in the flocculation process. 

However, for flocculation in A/D region, the fundamental assumptions upon which this 

model is based are violated for a significant length of time during the progress of 

flocculation. For the early portion of the flocculation process, the number concentration 

of larger floe is too small to have an impact on flocculation kinetics. 

3.4.4. Differential settling 

Flocculation also occurs when faster settling particles overtake slower settling 

particles. Assuming linear particle motion up to contact with another particle and that 

Stoke's law applies in settling of particles, the collision frequency for spherical particles 

of equal density can be given by (Gregory, 1989) 

Nij= (27cg/9^)(ps- p)(ai+ aj)\ai- a3)ninj 3.13 

where the collision kernel can be given as 

Kij=(27tg/9n)(p,- p)(ai+ aj)^(ai- aj) 

g = acceleration due to gravity 

Ps and p = density of the particles and the fluid respectively. 

This mechanism can be very important in promoting flocculation when particles are 

fairly large and dense, 

3.4.5. Comparison of different flocculation models 

It is useful to compare different flocculation models. In the most simple way, the 

kernel for different flocculation models of early stage flocculation can be given as 



www.manaraa.com

45 

(Gregory, 1989): 

Differential settling 

Perikinetic (Brownian Motion) 

Orthokinetic (Fluid shear) 

: P,i9„= (2KTOn)(a,+ 

•• P8(si.)= {4/3)G(a,+ aj)' 

: Pii(Dsr (2)ig^9|i)(p,- p)(a,+ a|)'(a,- a,). 

At the early stages of flocculation, very few k-fold (i+j) particles are present, so that the 

second term on the right hand side of both Perikinetic and Orthokinetic models can be 

dropped. Figures 3.9a and 3.9b (Han and Lawler, 1992) shows the relative importance 

of different flocculation mechanisms for different initial particle size on the initial rate 

of flocculation. Figure 3.9a was drawn using the above expressions of kernel for 

different mechanisms based on one particle of fixed size and computing the various rate 

constants as a function of the size of the second particle. The fixed particle diameter 

was taken as 2 nm and the diameter of the second particle varied from 0.1 to 100 jun. 

The fluid is assumed to be water at 20°C and the specific gravity of the particle is taken 

as 2.65. For the Orthokinetic case, a shear rate of 32 s ' has been assumed. 

In deriving the flocculation models in Figure 3.9a, it has been assumed that the 

particles follow a rectilinear path (straight line) while approaching each other before 

collision. But, the actual path of particle motion is curvilinear and requires trajectory 

analysis due to following reasons (Han and Lawler, 1992): 

First, water between the particles must move out of the way; this water 
movement influences particle, and considerations of this phenomena are termed 
hydrodynamic interactions. These interactions tend to prevent particle collisions. 
Second, van der Waals attractive forces exist between any two particles and 
become significant at small separation distances; these forces tend to promote 
particle collisions. Third, if the particles have charged surfaces, a difflise layer of 
ions rich in those with the charge opposite to that of the surfaces is induced in 
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Figure 3.9a. Collision frequency functions in a) rectilinear model and b) curvilinear 
model (DS-differential sedimentation, Sh-fluid shear, Br-Brownianmotion; 
dj - 2 pm; Pp -2.65 gm/cm^ 1-10" C; G-32 s"') (Han and Lawler, 1992) 
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the fluid surrounding each particle. The resulting electric fields of two 
approaching particles of similar charge cause an electrostatic repulsion and 
thereby tend to inhibit particle collisions, (p. 82) 

Considering the above factors Han and Lawler (1992) proposed that the above 

collision kernels need to be multiplied by a parameter called the collision frequency 

factor, ttij, which has a value always less than unity in a curvilinear flow. For 

rectilinear flow the value is 1. Han and Lawler (1992) proposed the following 

expressions of for those three collision mechanisms: 

1. Perikinetic : ajjjBr) = a + bX+cX^+dX' 

2. Orthokinetic : aij(sh) = 8(10'"'''^"'^"<'^)/(1+^)' 

3. Differential sedimentation : (DS) ~ 

Where X is the size ratio of small particle to larger particle (0 < A, < 1) and a, b, c, and 

d are constants which depend on various factors in different collision mechanisms. In 

perikinetic mechanism, the constants change with either particle diameter. In 

orthokinetic mechanism the constants are dependent on Hamakar constant (A), fluid 

viscosity (^), rms velocity gradient (G), and diameter of the larger particle. In 

differential settling the constants depend on Hamaker constant, diameter of large 

particle, and both particle and fluid density. Using the above correction factors, Han and 

Lawler (1992) modified Figure 3.9a to obtain Figure 3.9b. The total collision kernel 

was calculated as follows: 

P ~ Pij(Br)®ij(Br) Pij(Sh)®ij(Sh) Pij(DS)Otij(DS) 

When Figures 3.9a and 3.9b are compared, the following phenomena are 
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observed (Han and Lawler, 1992): 

1. The shapes of the curves for Brovmian motion and differential settling in the 

curvilinear case are similar to those in the rectilinear case, but the collision frequencies 

in the curvilinear model are dramatically reduced in magnitude. 

2. The above phenomenon is also observed in collisions for fluid shear for particles 

smaller than the constant size (2 ^im), but the two models yield dramatically different 

results when the second particle is substantially larger than the fixed size (2 |xm) 

particle. As the larger particle increases in size, the collision frequency reaches a 

maximum and then is reduced in curvilinear case, where as, it increases gradually in the 

rectilinear case. 

3. The regions of dominance for Brownian motion and differential settling are 

significantly expanded in Figure 3.9b compared to those in Figure 3.9a, but the region 

in which fluid shear is dominant is reduced. 

3.4.6. Floe strength and break-up 

Floe break-up usually occurs in orthokinetic flocculation due to application of 

fluid shear to increase the collision rate. This follows the "hierarchical" nature of 

flocculation in which small floes, composed of primary particles, are distinguished from 

"aggregates" of these floes. Only "aggregates" are considered to break under shear, 

giving smaller "floes" which are more resistant to break-up. Under given shear 

conditions, it is generally fotmd that floes grow only to a certain limiting size, beyond 

which breakage to smaller units occurs (Tambo and Hozumi, 1979). Camp (1955) 
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stated; "There is a limiting size corresponding to each value of the mean velocity 

gradient, G; and the size is greater, the smaller the velocity gradient" (p. 14). Ives and 

Bhole (1973) stated that other researchers such as Ritchie (1956), Michaels and Bolger, 

(1962a and b), Argaman and Kaufman (1970) and Lavankar and Gemmell (1968) 

observed the same fact. So the results of the above practical experiences and the 

laboratory investigations have proved one fact beyond a doubt, that the maximum 

limiting size of the floe changes inversely with respect to velocity gradient and this 

remains one of the most effective empirical indications of floe strength. 

Hanson (1989) cited Hinze's (1955) work which dealt with the fundamental 

mechanisms involved in the splitting of a liquid droplet in a dispersion process as 

follows: 

Three types of deformation mechanisms proposed by Hinze are as follows; (1) 
lenticular, (2) cigar-shaped and (3) bulgy deformation. In lenticular deformation 
the droplet is flattened forming the shape of a contact lens. The break-up 
depends on the magnitude and duration of force applied to the drop. If the 
magnitude and duration are sufficient, the drop forms a torus which then breaks 
into many small drops. Cigar-shaped deformation forms a prolate ellipsoid, then 
a long cylinder thread, and finally the structure breaks up into droplets. When 
the surface of the droplet is deformed locally, due to pressure differences at the 
interface, the deformation is called bulgy deformation. Bulges and protuberances 
occur, and parts of the drop finally separate. In droplet break-up, the effect of 
surface tension is important. If the deformation is not too large, the surface 
tension restores the drop to its original spherical shape; but this mechanism is not 
ubiquitous in a floe. So Hinze's work should be viewed critically in case of floe 
break-up. But his work is important in the sense, that it provides the basis for 
much of the work that followed. His work, somewhat similar in floe 
deformation,is that the dominant mechanism in droplet break-up in a turbulent 
flow field is droplet size dependent. For droplets equal to and larger than 
Kolmogorov microscale, the dynamic pressure forces of the turbulent motion are 
the cause for droplet break-up. For droplets smaller than microscale, the viscous 
stress will be the dominant break-up mechanism, which is true for floe break-up 
too. But this last idea was not explicitly stated by Hinze. (p. 216) 
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Several researchers, later on, tried to investigate the break-up mechanism of clay floes. 

Michaels and Bolger (1962b) worked with kaolinite suspensions, and found that floe 

yield stress was a fiinction of solids concentration. In their study they found a direct 

relationship (one increases as the other increases) between yield stress and the square of 

solids concentration below 5% solid concentration by weight. For higher solids 

concentration this relationship was even more dramatic. 

The strength of kaolinite floe with alum was measured by Hannah, Cohen, and 

Robeck (1967a) in a sweep floe region (pH=7.6 and alum dose=15 mg/1). They 

performed the floe strength test with three clay concentrations; 5, 15, and 50 mg/1. They 

used distilled water buffered vdth 50 mg/1 sodium bicarbonate for making suspensions 

and used a G value of 50 s"' for floeeulation speed. The floe strength was measured by 

passing the flocculated suspension through the Coulter counter orifice and counting the 

number and size of the particles at the outlet. The results showed that both the modal 

and maximum floe size increased with the increase of clay concentration. But they 

observed the opposite relationship between floe size and alum dose for a constant clay 

concentration. Three alum dosages were used; 5, 15, and 25 mg/1. They found that 

largest number of large and sturdy floes were formed for 5 mg/1 dose (the lowest alum 

to solid ratio that was tested). But the floeeulation rate was very slow. A similar trend 

was also seen with pH variation (tests were done at 7.2, 7.6, and 8.1). The floes grown 

at 7.2 were the strongest, but the slowest to grow; but they did not mention anything 

about the size at different pH levels. 

Tambo and Hozumi (1979) observed a direct relationship between floe size and 
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pH over a pH range 6.5 to 8.0 in a clay-alum floe system. They also found a linear 

relationship with negative slope between the log of maximum floe diameter and the log 

of energy dissipation over that pH range. The ALT ratio (mg Al/mg clay) seemed to 

influence the maximum size only at pH 6.5 (Figure 3.10). At all the pH levels, the 

maximum floe size was close to or below Kolmogorov microscale indicating that the 

particle break-up occurred due to viscous forces. 

1.0 

Velocity gradient in bulk zone, G 

3.2 10 
I I 

32 

pH 6.5 

ALT 1x10 

ri.Kolmogoroff 
^ microscale 

4 X 10 
2x 10 

0.01 0.05 0.1 0.5 1 

Effective rate of energy dissipation e, erg • cm-^ • s 

Figure 3.10. Relationship between maximum floe diameter and the effective rate of 
energy dissipation of clay-aluminum floes (Tambo and Hozumi, 1979b) 
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A very useful study was performed by Glasgow and Hsu (1984) using kaolinite 

clay and a polyacrylamide. The system was first flocculated at G=53 s"' for 20 minutes 

and then the suspension was subjected to much higher G value, 224 s'" for 3 minutes 

with the intention for floe break-up. They observed that this hike in mixing intensity did 

not increase the number of primary particles, but caused a decrease in number of large 

floes. So they concluded that the floe has a multi-level structure, and rather than being 

broken down to primary particles it is being reduced to first or second level aggregates. 

Working with alum-kaolinite system, Francois and van Haute (1983) clearly 

determined the levels of floe structure. They determined that the floe had a four level 

structure. The structure consisted of primary particles, floceuli (small floe), floes (made 

of aggregate floceuli), and floe aggregates. Each level above the primary particles is a 

little bit weaker. With the increasing mixing intensity in the reactor, the flocculated 

material will continue to break until a floe structure is reached which has sufficient 

strength to stand the stress. 

Tambo and Watanabe (1979a) derived an expression relating terminal settling 

velocity to floe density as follows: 

U = [(4g/3)(Ry45){(PrP.)/p.)d,]'° - {g/34n)(PrPjd,' 3.14 

U = terminal settling velocity (cm s"') 

g = gravitational acceleration (cm s"^) 

Re = Reynold's number = p„Ud/ji 

Pf and p„ = Density of floe and water respectively (gm cm"') 

df = floe diameter (cm) and n = dynamic viscosity (gm cm"' s"') 
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The above expression was developed simply by putting Cd=45/Rj in the settling velocity 

expression for discrete particle where Cp is the drag coefficient. The above value of Q, 

corresponds to sphericity (\ir) of 0.8 near Reynold's number 1 (Figure 3.11). The 

sphericity of ordinary floe was assumed to be around 0.8 based on photograph of floes 

and on several sphericity data in literature. The authors have defined the floe effective 

density as p= (pr - pj (buoyant density of floe) and plotted this effective density 

against floe diameter under varying conditions of pH, stirring speed, alkalinity etc. 
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Figure 3.11. Relationship between Reynolds number and drag coefficient (Tambo and 
Watanabe, 1979a) 
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When they plotted floe effective density versus floe diameter in a log-log paper 

they found a linear relationship with a negative slope under all experimental conditions. 

From their experimental results they found that effective density of floe is not much 

influenced by agitation intensity between 40 to 80 rpm (no energy input information 

was provided) and concluded that with more intense agitation, smaller floes are 

produced which are inherently denser (higher Pf). It appears from their result that the 

smaller floes have less number of water molecules in their structure than the larger 

floes. The effective density (which can also be considered as buoyant density) is the 

same for both large and small floes. They also found that at the fixed floe size, the floe 

density increases as the ALT ratio decreases and that the effect of raw water alkalinity 

on the floe density is negligible in the alkalinity range of usual surface waters (50 to 

200 mg/1 as CaCO,). 

Based on the theoretical considerations on turbulent flow field, Tomi and Bagster 

(1977) noted that floe rupture by instantaneous pressure difference on opposite sides of 

the floe is only theoretically valid for floe in the size range where inertial effects 

dominate, i.e., for floes larger than kolmogorov microscale. But viscous effects are 

significant for smaller floes and local velocity gradient at the floe surface may break up 

these floes. 

Based on the difference of the dynamic force exerted on the unit area of 

opposites sites of a floe, Tambo and Hozumi (1979) developed the expression for 

maximum floe size in two size ranges as follows: 

d^= for d,)> X, 
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Ke-^/<2(3.Kp)} for df«X, 3.15 

where K*= K = and ?io=('u'p^E<,)"'* 

e„ = the mean rate of energy dissipation per unit volume in a basin (erg cm''s"')> = 

binding strength (gm cm"' s"^), 

^ = the absolute viscosity (gm cm''s''), 

X) = the kinematic viscosity (cm^s"'), k and k* = constants, 

p„ = density of water (gm cm"') and 

Kp = floe density function (dimensionless) 

Xo is the Kolmogorov microscale, where the energy input in the expression was per 

unit volume rather than per unit mass. Under a given coagulation condition Kp and a 

are constant. Tambo and Watanabe (1979a) reported the value of Kp in the range of 1.0 

to 1.5 and the expressions for d^ become; 

for df»X„ 

for d,«^„ 

Since under the turbulent flow conditions, the effective energy dissipation rate is 

proportional to the third power of the rotational speed of the flocculator blade, N (rps), 

and to the second power of G then the expression for dn^* in terms of N and G is as 

follows; 

^ ̂ ̂ ^1.5 1.2) ^ Q-(1.0to0.8)fQr ^ 

d^ oc oc for dfHK 3.16 

Working with alum and clay, Boadway (1978) noted that if the strength of the bonds 

between particle is independent of size, and the equilibrium floe size is shear rate 
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dependent, then there must be structural differences in the larger floes. Their 

photographic evidence shows that the larger the floe, the more tenuous the bonds 

become, with evidence of weak spots. 

3.4.7. Models including break-up 

Introducing several hypotheses in von Smoluchowski's theory to make it 

applicable to the turbulent regime, Argaman and Kaufman (1970) proposed the 

following expression for flocculation kinetics: 

dn,/dt = - Ana KgRp^ npn, KpG + B (Rp/R,)" np KpG 3.17 

They also defined the following terms 

Kf = 3a(t) = flocculation constant 

(j) = floe volume fraction = (4/3) it np Rp^ 

Rp = radius of floe = K,/(KpG) 

R,= radius of primary particles 

B = floe break-up constant and a characteristic of a particular kind of floe 

a = fraction of collisions producing aggregation, called collision efficiency 

Kp= paddle performance coefficient 

Ks= proportionality coefficient expressing the effect of turbulence energy spectrum on 

the diffusion coefficient. 

K,= constant relating the average floe diameter to the rms velocity gradient in the tank. 
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Hp = number of floes per unit volume at time t 

KB= (3B(t)Kp^)/(47ni„R,^K,) 3.18 

Using the above defined terms in Equation 3.17 Ayesa et al. (1991) rewrote the model 

in the following form: 

n,= number of primary particles per unit volume at time t 

n„= number of primary particles per unit volume at time t = 0 

Ka= floe aggregation coefficient (dimensionless) 

Kb= floe break-up coefficient (s) 

Ka  indicates the ease of aggregation and has the following expression 

Kb  indicates the floe fi-agility under hydraulic shear and has the expression as given in 

Equation 3.18. 

Bratby et al. (1977) integrated Equation 3.19 for the time interval that a stirred 

batch reactor experiment lasts, t, as follows; 

dn,/dt = -K^niG + KgnoG' 3.19 

K^= KpKpK .plVpIVg 

n,/n„ = (KB/KJG + Exp (-KAGT){L-(KB/K;,)G} 3.20 
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In the above expression G, t, and nj/n^ are known experimental data, while Kb  and 

are unknown parameters to be determined by an adjustment procedure. Argaman and 

Kaufman (1970) and later, Odegaard (1985) published the values for K^ and Kg for the 

usual range of G and t in wastewater treatment as follows: 

Ka= 3.0X10"^ (dimensionless) and Kb= 5.0X10"^ S for 

5s'' < G <50S' and 0 < t < 2000s 

Ayesa et al. (1991) developed a computer based numerical technique to estimate 

the values for K^ and Kg. When they generated ideal data using Equation 3.20 with the 

above reported values of K^ and Kg, they observed high percentage of error with 

respect to real experimental data as shown in Table 3.4. When they fitted Equation 3.20 

to real data, they found different values of K^ and Kg than the above suggested values, 

which are also shown in Table 3.4. Based on the results of fitting Equation 3.20 to sets 

of real experimental data, they also found an inverse dependence of Kb/K^ on G. They 

ascribed this dependence of Kg/K^ on G exclusively to the break-up coefficient Kg 

based on several considerations found in various literature sources, especially the 

observation of an inverse relation of maximum stable floe diameter with G. They used 

their rigorous numerical technique to compare three models with three different 

expressions of Kg. These three expression of Kg are as follows: 

Model 1: Kg constant 

Model 2: Kg= K,lnG + Kj suggested by Bratby (1980) 

Model 3: Kg= K,G° + Kj suggested by Ayesa et al. (1991) 
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Table 3.4. Results of application of the numerical method by Ayesa et al. (1991) to 
three groups of data. 

Data KB(S) Error (%) 

Turbidity (Bratby, 1977) 2.10 X 10"^ 3.35 X lO""' 23.60 
Color (Bratby, 1980) 4.05 X 10"^ 7.93 X 10-® 21.48 
Color (Margeli and 2.83 X 10"^ 1.96 X 10 ' 29.61 
Garcia-Heras, 1987) 

The results of adjustment with the above models are shown in Table 3.5. From 

these results it is clear that introduction of this type of dependence between breakup 

coefficient (Kg) on G in the expression describing the flocculation process (Equation 

3.20) leads to an appreciable decrease in the final relative error. In all the cases model 3 

performed best. The significant improvement was observed when model 3 was applied 

to color data of Margeli and Garcia-Heras (1987) with regard to model 2, but the 

marginal improvement in the relative error when Bratby's data were adjusted suggest 

that the way in which Kg changes with G is greatly dependent on the kind and 

concentration of the floes generated in each particular process (Ayesa et al. 1991). But 

Ayesa et al. (1991) did not give any explanation about the negative exponent (n = -2.1) 

that was obtained when they fit their model to the color data of Margeli and Garcia-

Heras (1987). The inverse relation between Kg and G in this case raises the question 

about the applicability of their model. 

Letterman et al. (1979) used the kinetic model by Parker et al. (1970) in 

determining the effect of bicarbonate ion concentration on flocculation with aluminum 
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Table 3.5. Results of adjustments of real experimental data using the three models of flocculation (Ayesa et al., 
1991) 

Data Model Ka  X 10^ Kb ( S) K, K, n Error 

Turbidity 
(Bratby, 
1980) 

1 
2 
3 

2.15 
2.87 
2.99 

3.35 X 10 '  
-1.87 X 10 ' 
-2.05 xlO '^ 

1.37 X 
5.37 X 

10"® 
10 '  3.4 

23.60 
14.81 
13.68 

Color 
(Bratby, 
1980) 

1 
2 
3 

4.05 
4.15 
4.01 

7.93 X 10"^ 
-4.42 X 10"® 
-2.53x10" 

2.16 X 
1.01 X 

10 '  
10"' 3.5 

21.48 
14.66 
13.87 

Color 1 
(Margeli & 2 
Garcia-Heras, 3 
1987) 

2.83 
3.62 
6.11 

1.96 X 10-® 
-2.13 xlO® 
2.25 x 10^ 

1.05 X 

3.92 X 

10'  
lO"'' -2.1 

29.61 
26.48 
20.19 
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sulfate. The model is given as 

dN/dt = -k,N + kz 3.21 

in which N is the concentration of unflocculated primary particles; k, is an 

agglomeration rate constant; and kz is a floe break-up or erosion rate constant. If the 

residual turbidity n is assumed to be proportional to N, then Equation 3.21 can be 

integrated from time, t = 0 and residual turbidity = n,, to time, t = t and residual 

turbidity = n to yield 

Plot of n vs. t yields a concave curve where n decreases with length of flocculation 

period and gradually approaches asymptote n = kj/k, (Figure 3.12). The quantity kj/k, is 

obtained by plotting n vs. t and then locating the asymptote. The magnitude of k, is 

determined by measuring the slope of the best-fit line obtained when the left hand side 

of Equation 3.22 is plotted against the length of flocculation period (t). The magnitude 

of kj is determined by multiplying the quantity kj/k, by k,. They performed a series of 

jar tests in determining the residual turbidity for various periods of flocculation followed 

by a 30 minute sedimentation. 

In[(n-k2/k,)/(n„-k2/k,)] = -k,t 3.22 
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Figure 3.12. Residual turbidity versus flocculation period (Letterman et al., 1979) 
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3.5 Coagulants 

We have seen previously that coagulants or flocculating agents are added to a 

particular suspension to destabilize the lyophobic colloids from their kinetic stability. 

There are two major categories of primary coagulants being used in the water treatment 

industry: metal salts, and organic polymers. The metal salts of aluminum and iron, 

particularly alum [AljCSOJj.lSHjO], are the most wadely used coagulants 

(Sricharaenchaikit and Letterman, 1987). They are relatively inexpensive and can be 

easily prepared by the operators. Recently synthetic organic cationic polymers are 

gaining popularity because of their high efficiency in turbidity removal. But they are 

expensive and we do not know a great deal about them. Since all the work in this 

project was performed with metal salts the discussion will be confined to metal salt 

coagulants only. 

Metal salt coagulants are available in a number of chemical forms, all of which 

are salts of aliuninum or iron. The following are the metal coagulants that are 

commonly used (Hanson, 1989): 

• alum or aluminum sulfate [Al2(S04)3.nH20] 

• polyaluminum chloride [Al(OH)^Cly] 

• ferric sulfate [Fe2(S04)3] and ferrous sulfate [FeCSOJ] 

• ferric chloride [FeClj] 

• ferric nitrate [Fe(N03)3.9H20] for research studies only 

Many researchers, in discussing metal salts, deal with aluminum and iron salts 
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simultaneously because of their identical solution chemistry. Since the work reported 

herein was done with alum and ferric nitrate, the same format will be followed with the 

distinct differences noted where necessary. The general mechanisms of particle 

destabilization are the same for both metals. But because of differences in reaction 

kinetics, solution speciation, and electron structure, these two types of metal salts may 

respond differently in the destabilization process, especially due to temperature 

changes. 

When a metal salt is added to clay suspension, the solution chemistry of metal 

ions is the prime concern and the speciation of the ion influences the destabilization of 

colloidal particles. The influence of the associated anion is often negligible, especially 

when the anions have single charge (e.g., CI", NOj" etc.). Sulfate (S04^ ) ions influence 

the destabilization nature of primary particles when they are present in appreciable 

concentration, but their influence at the low concentration contributed by the alum dose 

is not significant and can be negligible. So mainly the discussion will emphasize Al(III) 

and Fe(III) ions. The scope of discussion about the chemistry of these two coagulants is 

enormous, but the discussion will be limited mainly to that part which is important for 

coagulation-flocculation process. 

When a metal salt coagulant is added to a colloidal suspension, different 

monomeric and polymeric species are formed at different pH and concentrations, 

following a sequence of steps called hydrolysis, which represents the progressive 

replacement of water molecules in the hydration shell of metal ion by hydroxyl groups. 

Taking aluminum as an example, the following sequence of hydrolysis steps can be 
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written for increasing pH (Gregory, 1989): 

Al^^ A1(0H)2" A1(0H)3 -» AKOH)/ 

Hydrolysis involves a loss of positive charge until the uncharged hydroxide is formed 

(at sufficient concentration). This is practically insoluble in water and so forms a 

precipitate, which is initially amorphous, but may slowly form crystalline gibbsite. 

Baes and Mesmer (1976) provided an excellent discussion of the hydrolysis of 

cations, the soluble species formed as a consequence of hydrolysis and the importance 

of soluble metal hydrolysis products as follows: 

Most cations fi-om one or more hydrolysis products. ... Because of the 
mmiber of diversity of the hydroxide complexes which can be formed in 
solution, the resulting chemical behavior of a given metal can be a complicated 
fimction of pH and concentration and ... if the identity and stability of the 
hydrolysis products are not known ... quite unpredictable. 

The determination of the identity of dissolved hydrolysis products has 
proven to be a difficult and challenging task primarily for two reasons: 

1. The hydrolysis complexes formed are often polynuclear, that is, they contain 
more than one metal ion. It can be readily perceived that this can result in the 
formation of a far greater variety of species than would be the case if only 
mononuclear species were formed during the hydrolysis of a cation. Less 
obvious, perhaps, is that this can also allow more hydrolysis products to be 
present simultaneously in appreciable amounts. The diversity of possible species 
and the number which can appear more or less simultaneously greatly complicate 
the problem of identifying them and determining their stability. 

2. The range of pH over which the formation of soluble hydrolysis products 
can be studied is often limited by the precipitation of the hydroxide or the oxide 
of the metal cation. While the range of conditions studied usually can be 
extended to quite supersaturated solutions, the limitations imposed by hydrolytic 
precipitation are often severe, rendering the problem of characterizing the 
hydrolysis products formed in solution even more difficult than would otherwise 
be the case. 
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Soluble hydrolysis products are specially important in systems where the 
cation concentrations are relatively low. The formulas and charges of the 
hydrolysis products formed in such systems can control such important aspects 
of chemical behavior as 

1. adsorption of the dissolved metal on the surface of mineral and soil particles, 
2. the tendency of the metal species to coagulate colloidal particles, 
3. the solubility of the hydroxide or oxide of the metal, 
4. the oxidizability or reducibility of the metal to another valence state .... 

(pp. 2-3) 

Figure 3.13 (Amirtharajah and O'Melia, 1990) is the solubility diagram for 

aluminum in water which was drawn using thermodynamic data based on Table 3.6. 

Figure 3.13a shows the different hydrolysis products at equilibrium with crystalline 

aluminum hydroxide [gibbsite, Al(0H)3(c), log K—33.5, i.e. solubility product is lO'"'^) 

and Figure 3.13b shows the equilibrium diagram of different hydrolysis products with 

amorphous Al(OH)3(3n,) (logK=-31.5). In this diagram three polymeric species 

[Al2(OH)2'*^, Al3(OH)4'^ and A1,304(0H)2/'^] and five monomers [AP"^, Al(OH)^^, 

A1(0H)2'^, A1(0H)3, and A1(0H)4] are in equilibrium with freshly precipitated 

A1(0H)3(3„). Lines for the A1(0H)2'' and A1(0H)3 species are dashed to indicate that their 

concentrations are uncertain because of doubtful thermodynamic data. In both the 

diagrams, at alkaline pH values (pH ) 8.0), the principal soluble species present at 

equilibrium is the monomeric anion A1(0H)4' (Amirtharajah and O'Melia, 1990). 

Figures 3.14 and 3.15 (Baes and Mesmer, 1976 ) demonstrate the complexity of 

the metal speciation with regard to both concentration and pH. The dashed lines in the 

figures represent the percent of the metal present as a specific species and the number 

label in the lines (x,y) indicates, the number of aluminum ions in the species (x), and 
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Figure 3.13. Solubility of aluminum at equilibrium with (a) gibbsite and (b) 
amorphous AlCOH)}. Thermodynamic data were taken from Table 3.6 
(Amirthaiajah and O'Melia, 1990) 
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Table 3.6. Silicate, Iron (HI), and Aluminum Equilibria (Amirtharajah and O'Melia, 
1990) 

Reaction logjr{25*C) 

1. Si02(am) 4 2H,0 - Si(0H)4 -2.7 
2. Si(0H)4 - SiO(OH),- + H"' -9.46 . 
3. SiOCOH),- - SiOatOWa" + H"' -12.56 
4.4Si(0H)4 - Si40e(0H)e + 2H'' + 4H20 -12.57 
6. Fe'"- + HaO « FeOH'^ + -2.2 
6. FeOH'^ + HaO - Fe(OH)J + H"" -3.5 
7. Fe(OH)a'- + HaO - FetOH)^ + H"^ -6 
8. Fe(0H)8 + HaO - Fe(0H)4 + H"" -10 
9. 2Fe»-' + 2HaO « Fea(0H)J-^ + 2H* -2.9 

10. 3Fe®^ + 4HaO - FeaCOWj"" + 4H-" -6.3 
11. Fe(OH)a(ain) - Fe»-^ + SOH" -38.7 (estimated) 
12. o - FeO(OH) + HjO » Fe'"^ + SOH" -41.7 
13. Al*^ + HaO - AlOH"^ + H"^ -4.97 
14. AlOH®"- + HaO - Al(OH)a + H"" -4.3 
15. A1(0H)5- + HaO - AKOH), + H"" -5.7 
16. Al(OH)a + HaO - AKOH)^ + H"" -8.0 
17. 2A1'-' + 2HaO « Ala(OH)J-" + 2H-" -7.7 
18. aAl*-' + 4H80 « Ala(OH)R + 4H-" -13.94 
19.13A1»^ + 28HaO - Alu04(0H)5; + 32H-^ -98.73 
20. Al(0H),(am) - Al'-' + SOH" -31.5 
21. A1(0H)8(C) - A1»* + 30H- -33.5 
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the number of hydroxide ions present in the species (y). Similar information on the pH 

dependence of aluminum speciation is shown in Figure 3.16 (Hayden and Rubin, 1974). 

Moreover, the concentration dependence of metal speciation for aluminum sulfate, ferric 

chloride and ferric sulfate solutions is shown in Figures 3.17, 3.18, and 3.19 

respectively. From all the figures and discussion stated above, it is clear that distribution 

of different species in aqueous solution of metal coagulants is dependent on the 

concentration of metal coagulants and the solution pH. 

From the above figures we can also visualize the distinct differences between 

alum and ferric coagulants. From Figure 3.14c we can see that the minimum solubility 

of iron(III) is 10 " ' and that occurs at pH between 7 and 9. On the other hand least 

solubility of alum is 10"®^M and that occurs at pH between 6 and 7. Also from Figure 

3.20 (Burgess, 1988) we see (from the right hand axis) that the mean residence time for 

a water molecule in the primary hydration shell for iron(III) is in the micro second 

(|xsec) range, while for aluminum(III), it is in the second range. Based on these time-

scales it appears reasonable that the iron(III) will come to equilibrium much quicker 

than aluminum(III) (Hanson, 1989). 

Figures 3.21 and 3.22 represent turbidity coagulation diagram for aluminum 

and iron respectively (Amirtharajah and Mills, 1982 and Johnson and Amirtharajah, 

1983). These figures were developed based on the data obtained from major coagulation 

results of several researchers. The coagulation data were plotted on a single diagram of 

log [Metal species] in moles per liter versus the pH of the mixed solution, and 

superimposed on the thermodynamic solubility diagram that formed the framework for 
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Figure 3.16. Distribution of 5.0 x 10^ M hydrolyzed aluminum (m) as a function of 
pH (Hayden and Rubin, 1974) 
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Figure 3.17. Species composition of aluminum sulfate solutions (O'Melia, 1978) 
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Figure 3.18. Species composition of ferric chloride solutions (O'Melia, 1978) 
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Figure 3.19. Species composition of ferric sulfate solutions (O'Melia, 1978) 
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Figure 3.21. The alum coagulation diagram and its relationship to zeta potential 
(Amirtharajah and O'Melia, 1990) 
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the coagulation results. The interaction between the colloid and aluminum hydroxide and 

the relationship of the zeta potential to the coagulation diagram are shown in the lower 

portion of the alum coagulation diagram. 

In the next few paragraphs an attempt will be made to explore the coagulation 

diagrams in understanding the coagulation process, i.e., how the system will react at 

different coagulant dosages and pH conditions. For the sake of simplicity alum will be 

considered in detail and difference between aluminum and ferric salts will be illustrated 

in some aspects. 

Coagulation occurs when soluble hydrolysis species (e.g., AlOH^"^) or solid 

aluminum hydroxide (which can itself be charged because of surface complexes) interact 

with colloidal particles (Amirtharajah and O'Melia, 1990). From the lower portion of 

Figure 3.21 it can be seen that the surface charge of the solid A1(0H)3 is pH dependent. 

At low pH it is very positive, and as the pH increases, the charge decreases. At the 

isoelectric point (iep) or at the point of zero charge (pzc), the surface charge of 

aluminum hydroxide precipitate is zero. The isoelectric point (iep) for aluminum 

hydroxide is in the pH range of 7.0 to 9.0, depending on the ions in the solution, 

especially the anions. Table 3.7 lists representative values for the pzc of A1(0H)3 and 

Fe(0H)3 precipitates. 

The data shown in Figure 3.21 were based on the assumption that aluminum 

hydroxide has a pzc (i.e., isoelectric point) of 8.0. The interaction of the positively 

charged colloids produces two points of zero zeta potential at pH values of 4.8 and 6.8 

at points D and E of Figure 3.21. Favorable coagulation can be expected at both these 
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conditions of pH. Between these two values, the coated colloid is restabiiized because of 

Table 3.7. Typical pH values resulting in the zero point of charge (zpc) for 
hydroxide precipitates 

Aluminum Ferric Source 
Hydroxide Hydroxide 

6.7 Stumm and Morgan, 1962 
8.0 O'Melia, 1978 
6.8 Hong-Xia and Stumm, 1987a 

7.0 Hayden and Rubin, 1974 
9.0 Letterman and Vanderbrook, 1983 
8.0 Amirtharajah, 1984 and Hall, 1965 

excess adsorption of positively charged species. Figure 3.23 (Hall, 1965) and Figure 

3.24 (Hong-Xia and Stumm, 1987b) illustrate the zeta potential-pH relationship for alum 

and iron coagulants respectively. 

Hanson (1989) presented two examples in order to demonstrate; 

• the complexity of the metal salt system, 

• the difference between the adsorption/destabilization (A/D) and the sweep floe 

mechanisms, and 

• the importance of coagulant precipitation kinetics in determining the flocculation 

mode. 

The first example was for a high dose of alum (30mg/l as alum). This is an optimal 

sweep floe dosage. The second example was for a low dose (5 mg/1 as alum), typical of 
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Figure 3.23. Zeta potential of kaolinite in aluminum sulfate solutions (Hall, 1965) 
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Figure 3.24. Micielectrophoiesis mobility of kaolinite and Fe floes (Hong-Xia and 
Stumm, 1987b) 
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A/D coagulation. 

Considering a dose of 30 mg/I and refering to Figure 3.21 Hanson (1989) stated 

as follows: 

Remember, these conditions represent the final coagulant concentration and pH 
in the reactor. As we start at pH of 4.0 we are outside the precipitation boundary 
in a region where all of the aliuninum exists in a soluble AP"" state. At a pH of 
4.5 two things happen: 

• the solubility limit is reached, 
• the soluble species are dominated by the hydrolyzed polymeric 

aluminum species [Al,(OH)y''̂ ; Al8(OH)2o'''̂ , as seen in Figure 3.16]. 
The hydrolyzed polymeric species actually becomes the dominant species just 
prior to precipitation, and are only present in the appreciable amounts over a 
narrow pH range (Hayden and Rubin, 1974). The narrow pH range in which 
these polymeric species dominate, appears to coincide with the first charge 
neutralization range in Figure 3.21. 

Small hydroxy complexes are reasonably soluble and easily adsorbed on 
to the colloid particles, making these complexes extremely effective coagulants 
(Eilbeck and Mattock, 1987). 

As we continue across the diagram to a pH of 5.0, the hydrolyzed 
polymeric species disappear, and are replaced by A1(0H)3 as the dominant 
species. This is the restabilization range. The surface charge of solid A1(0H)3 is 
pH dependent (Stumm and Morgan, 1981). At low pH it is very positive, and as 
the pH increases, the charge decreases. At zero point of charge (ZPC), or the 
isoelectric point, the surface charge of aluminum hydroxide precipitate is zero. ... 
In the restabilization area the surface charge on the precipitate is so high that the 
particles with adsorbed precipitate experience charge reversal, and become 
positively charged. It is noted that if the primary particle concentration is high 
enough, the restabilization zone may disappear entirely, because there will not be 
enough precipitate to reverse the original charge. 

As the pH is raised, the surface charge of aluminum precipitate becomes 
lower and lower, and somewhere near pH of 6.0, the typical water is once more 
destabilized and will coagulate.... Again, note how sensitive the surface 
chemistry of these hydroxide precipitates is to shifts in pH. At a pH of 6.5 the 
adsorption/ destabilization mechanism ceases to dominate the fiocculation and 
sweep fioc becomes the dominant mode of coagulation. In sweep floe large 
quantities of aluminum hydroxide precipitate are formed. These precipitates 
sweep up the particles as they move through the water. 

... When the pH is low enough so that adsorption followed by 
precipitation on the surface is favored, there will not be sufficient aluminum in 
solution to form the large quantities of precipitate needed for sweep floe to 
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occur. However, as the adsorption step becomes less and less favorable, the 
soluble aluminum is in solution long enough for the sweep floe to form. Sweep 
floe dominates from pH of 6.5 to 8.4. At a pH of 8.4 the hydroxide species 
once more become more soluble, (pp. 117-119) 

From Figure 3.22, it appears that for a ferric chloride dose of 30 mg/1, the 

restabilization will prevail over a broad range of pH about 2.8 to 5.6 for low colloid 

concentration (this range narrows at higher colloid concentration) followed by a much 

narrower A/D region (pH range is about 5.6 to 6.0). Again a much broader sweep floe 

region exists beyond pH 6.0 until a pH of about 9.0. A combination of Figures 3.21 

and 3.22 is shown in Figure 3.25 (Johnson and Amirtharajah, 1983). 

Water treatment engineers and researchers are interested in two main 

mechanisms of flocculation; adsorption/destabilization and sweep floe mechanisms. The 

interaction between the two mechanisms and the metal salts is shown schematically in 

Figure 3.26 (Dentel, 1987). The formation time of different aluminum hydrolysis 

species is shown in Table 3.8 (Amirtharajah, 1987) which will help understand the shift 

from one mechanism to another. 

Table 3.8. Formation time of aluminum hydrolysis species (Amirtharajah, 1987) 

Hydrolysis species Time scale (sec) 

A1 (III) monomers < 0.1 
A1 (III) polymers 0.1 to 1 
Aluminum hydroxide precipitates 1 to 7 
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Figure 3.25. Ferric chloride and alum coagulation diagrams [hatched areas represent 
sweep floe zones for feriic chloride (\\\) and alum (///)] (Johnson and 
Amirtharajah, 1983) 
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All the discussion above was for high coagulant dose, i.e., 30 mg/1. If a low 

coagulant dose, i.e., 5 mg/1, is considered the first change in alum coagulation diagram 

is that all of the regions previously described shift to the right. The other change is the 

disappearance of the sweep floe region. With the low dose of alum the A/D mechanism 

will be effective, but there is not enough aluminum added to the system to form a good 

sweep floe even if the pH is favorable (Hanson, 1989). When the ferric chloride 

coagulation diagram is considered at this dose of 5 mg/1, the first change evident is that 

both the restabilization and sweep floe regions shrink at low dose whereas the A/D 

region expands in both the pH directions (<— ->). Many researchers such as Morris and 

Knocke (1984) and Dann (1988) have found that sweep floe formed with iron (III) is 

denser and probably stronger than the floe formed with aluminum (III). So from all the 

discussions made in this section, it is clear that the hydrolysis reactions, metal 

hydrolysis product speciation, and the mode of coagulation depend on pH and the 

concentration of the coagulants. 

Bicarbonate ion has been used as a buffer system by several researchers 

(Letterman et al., 1979; Letterman and Vanderbrook, 1983; Hanson and Cleasby, 1990; 

Hanson, 1989; Amirtharajah and Mills, 1982 etc.) in coagulation flocculation research. 

The main purpose of using this ion is to maintain a constant pH during the coagulation 

flocculation process. Since pH is the one of the parameters that controls the metal 

hydrolysis product speciation, hydrolysis reaction and the mode of flocculation, the 

rapid drop in pH with the addition of coagulant might alter the intended mechanism. 

Letterman and Vanderbrook (1983) showed rather dramatically the importance of pH in 
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the fiocculation process, by flocculating a colloidal suspension at a pH of 6 and 8 with 

alum. At pH=8, the aluminum concentration required for charge neutralization was 

almost 10 times greater than that needed at a pH=6. 

Hanson (1989) demonstrated the importance of the buffer. He showed that the 

pH of Ames, IA tap water became 8.0 after it was allowed to stay overnight. When 15 

mg/1 of alum was added to this unbuffered tap water, the pH dropped form 8.0 to 6.7. 

Hanson (1989) further indicated that at this dose of 15 mg/1 as alum, the shift in pH is 

likely to move the coagulation mode from the sweep floe region to A/D region and if 

someone intends to work in A/D region, it is best to control the system pH so that the 

entire experiment can be done in the A/D region. He also stated that A/D region exists 

close to a pH of 7 (Figure 3.21) which suggests the need of carbonate as the buffer 

system of choice since its buffer intensity shows a peak (change in pH per unit of 

strong acid is minimum) between a pH range of 5 to 8. In the pH range of 7 to 8.3 it 

can be assumed that almost the total carbonate carbon concentration is equal to the 

bicarbonate ion concentration. 

Miller (1925) and Letterman et al. (1979) indicated that addition of a carbonate 

buffer to the system would not only stabilize the pH, but would broaden the range for 

good fiocculation. Using a method of analysis based on a kinetic model of the 

fiocculation process and series of jar tests, Letterman et al. (1979) showed that an 

increase in the initial bicarbonate ion concentration increased both the agglomeration 

and erosion rate constants. Overall performance improved with increasing initial 

bicarbonate ion concentration. They attributed this effect of bicarbonate ion on 
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flocculation efficiency to its ability to alter the physico-chemical characteristics of the 

aluminum hydroxide precipitate. They worked with 50 mg/1 kaolin clay suspension 

which was prepared on the day of experiments at 23°C. They used 1% Al2(S04)3.18H20 

stock solution for feeding without any dilution. All experiments were performed using 

1-L volume of suspension. Two minutes rapid mix was done by a magnetic stirrer 

followed by variable period of flocculation on a Phipps and Bird jar test apparatus at 40 

rpm (corresponds to G=50s'' at 23° C). Residual turbidity was measured after 30 minutes 

of sedimentation. Dosages used was between 10 to 40 mg/1 as alum. No method was 

employed to control the pH; they recorded the pH (after rapid mixing) and it was 

variable depending upon the coagulant and buffer concentrations. But in their study they 

did not report any measurement of zeta potential which raises the question about the 

mode of flocculation (A/D or sweep floe) for each experiment. 

3.6 Turbulence and Mixing 

3.6.1. General 

Turbulence and mixing are often discussed simultaneously in many literature 

sources. They are very much interrelated. Both of them are generated or caused by 

energy input or transfer in the system. In coagulation and flocculation processes both of 

them are very important to understand. In this section, the interrelation between mixing 

and turbulence and their importance in flocculation will be discussed. Before entering 

into the details of turbulence and mixing the complexity of turbulence, its extent and the 
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tussle among various researchers to explain this phenomenon need to be discussed. 

The extent of both turbulence complexity and turbulence literature is next to 

infinity. It has many questions without answers; it has many surprises. The biggest 

surprise probably so far is as follows (Gleick, 1987): 

Turbulence was a problem with pedigree. The great physicists all thought about 
it, formally or informally. A smooth flow breaks up into whorls and eddies. Wild 
patterns disrupt the boundary between fluid and solid. Energy drains rapidly from 
large-scale motions to small. Why? ... It seemed almost unlaiowable. There was 
a story about the quantum theorist Werner Heisenberg, on his deathbed, 
declaring that he will have two questions for God: why relativity, and why 
turbulence. Heisenberg says, / really think He may have an answer to the first 
question, (p. 121) 

In the last decade or two there has been a strong tussle between two groups of 

fluid dynamists based on the opposing approaches used to explain this phenomenon. 

One set of beliefs is advocated by the followers of the statistical approach. They attempt 

to explain the dynamics of the flow in terms of the averaged flow characteristics and 

according to Lesieur (1987), "This community, which has followed the glorious trail of 

Taylor and Kolmogorov, believes in the phenomenology of cascades and strongly 

disputes the possibility of any coherence or order associated to turbulence" (p. vii). The 

other set of beliefs are supported by an increasing number of scientists who identify 

themselves with the emerging theories, based on the philosophy of order within the 

chaos. These scientists consider "... turbulence from a purely deterministic point of view, 

by studying either the behavior of dynamical systems, or the stability of flows in various 

situations. To this corrmiunity are also associated the experimentalists who seek 

to identify coherent structures in shear flows" (p. vii) (Lesieur, 1987). 
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The above are not the only theories, they were actually preceded by 

phenomenological theories of turbulence. Some of these phenomenological theories 

stated by Brodkey (1967) and Bird et al. (1960) are Boussinesque's Eddy viscosity 

theory, Prandd's Mixing-length theory, Taylor's Viscosity transport theory, von 

Karmans's Similarity hypothesis, etc. These theories are semiempirical in nature and 

tried to achieve an expression for the turbulent momentum flux associated with the 

fluctuating components of velocity in a turbulent flow field. 

Due to limitless complexity in deriving flow equations for turbulent flow and 

solving them, most of the studies of turbulent flow were empirical or semiempirical, 

based on many assumptions and numerous experimental results. Those studies, based on 

many assumptions, were adequate for prediction of the mean velocity profile necessary 

for solving many practical problems, but could not be much of help in trying to 

understand the true mechanism of turbulent flow. Uncountable numbers of studies are 

going on in various fields involving turbulent transport of various quantities (like 

momentum, mass, heat etc.). All those will not be discussed here; rather a portion will 

be discussed that will augment the understanding of the impact of turbulence on the 

flocculation process. 

3.6.2. Definition of turbulence 

Dictionary meaning of "turbulent" is stormy agitation or erratic in velocity. 

Hinze (1975) defined turbulent fluid motion as an irregular condition of flow in which 

the various quantities show a random variation with time and space coordinates, so that 
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statistically distinct average values can be discerned. He further states that turbulence 

can be thought of as a superpositioning of ever smaller periodic motions or eddies. 

Voke and Colh'ns (1983) state: "The turbulent flow of viscous fluid is one of the most 

complex and beautiful macroscopic phenomena found in nature. It is essentially four 

dimensional, involving the time dependent interchange of energy and momentum 

between vortices of different sizes and lifetimes, ..., in three dimensional space" (p. 

119). 

Despite many debates and complexities in turbulence, it is accepted that most 

flow must display some salient characteristics before it can be christened as being 

turbulent. These characteristics include inherent disorder, enhanced mixing, presence of 

vorticity, and time dependency which distinguish turbulence from wave motion and two 

dimensional flows (Hinze, 1975; Lesieur, 1987; Panton, 1984; Shapiro, 1961; Stewart, 

1969; Tennekes and Lumley, 1972; Gleick, 1987; and Voke and Collins, 1983). 

Disorder: A turbulent flow is unpredictable in detail, i.e., the characteristics are 

irreproducible in its entire detail even if all the experimental conditions are reproduced 

in exactly the same details. But averages over suitably large intervals of space and time 

seem to be well-defined and stable. According to Gleick (1987), "It is a mess of 

disorder at all scales, small eddies within large ones. It is unstable. It is highly 

dissipative, meaning that turbulence drains energy and creates drag. It is motion turned 

random" (p. 122). 

Figure 3.27 (Amirtharajah and O'Melia, 1990) shows a schematic diagram of a 

turbulent flow field which consists of the concepts of the intensity of turbulence, the 
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Figure 3.27. Schematic diagram of turbulent flow field (Amirtharajah and O'Melia, 
1990) 
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scale of turbulence, and the correlation functions. The length scale of turbulence can be 

crudely interpreted as the average size of turbulent eddies or the size of the packet of 

fluid within which high correlation of fluid velocity exists. As shown in Figure 3.27, 

very large vortices or large eddies arise from the interaction of the mean flow with the 

boundary that have macroscale and contain a large fraction of turbulent energy of the 

system. These large eddies degenerate successively through energy cascade (or transfer) 

to the smallest eddies where they are dissipated by viscous effects into heat. The terms 

eddies and vortices are often used interchangeably in the turbulent literature, but vortices 

would be more appropriate term (Hanson, 1989). 

Time dependency: In addition to the variation of velocity with respect to spatial 

coordinates, if we look microscopically at a point in the turbulent flow field, we will see 

a fluctuation of velocity with time with respect to an average velocity, U. This 

fluctuation of velocity with time is illustrated in Figure 3.28 (Amirtharajah and O'Melia, 

1990) where an instantaneous velocity U at a point in a turbulent flow field can be 

represented by a time averaged value U and a superimposed fluctuating velocity u as: U 

= U + u. The summation of the fluctuating velocity component is necessarily zero; but 

the root mean squared (rms) velocity of fluctuations, (u^)"^ represents the variance of 

the velocity and is called the intensity of turbulence, u' (Amirtharajah and O'Melia, 

1990). This intensity is often normalized by the time averaged velocity^ U as u'/U and is 

called normalized turbulence intensity. The intensity of turbulence increases with the 

increasing value of u'/U. 

Energy cascade: In a very simple way, turbulence is frequently described as an 
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Figure 3.28. The instantaneous and fluctuating velocity in a turbulent flow Held 
(Amirtharajah and O'Melia, 1990) 
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energy cascade (or eddy cascade); where the energy is put into the system at large 

length scales. The cascade of energy then takes place predominantly from neighboring 

eddies to neighboring eddies continuing to smaller and smaller length scales (larger and 

larger velocity gradients) through the mechanism of vortex stretching until viscosity 

finally dissipates the energy received by the smaller eddies (Frost and Bitte, 1977; and 

Voke and Collins, 1983). 

The above idea of hierarchy of energy transfer from larger length scales to 

smaller length scales was the crop of Lewis F. Richardson's fertile brain. Monin and 

Yoglom (1971) describe the Richardson idea as follows: 

According to his assumption, developed turbulence consists of a hierarchy 
of 'eddies' (i.e., disturbances or non-homogeneities) of various orders. Here the 
'eddies' of a given order arise as a result of the loss of stability of larger 'eddies' 
of the preceding order, borrowing their energy, and, in their own turn, losing 
their stability and generating smaller 'eddies' of the following order to which they 
transmit their energy. Thus arises a peculiar 'cascade process', of breaking down 
of eddies in which the energy of the overall flow is transmitted to motions of 
smaller and smaller scale, down to motion of the smallest possible scale, which 
is stable. To be stable, these extremely small-scale motions must be characterized 
by a sufficiently small Reynolds number. Thus it follows that viscosity will play 
an important role and, consequently, there will be considerable dissipation of 
kinetic energy into heat. The corresponding physical picture of developed 
turbulence is expressed in the following rhyme ... often quoted (usually without 
the exact reference and the last line): 

Big whorls have little whorls; 
Which feed on their velocity; 
And little whorls have lesser whorls, 
And so on to viscosity 
(in the molecular sense), (pp. 12-13) 

Figures 3.29,3J0,3 Jl, and 332 sum up the entire energy picture 

flow. Figure 331 is the modification or enhancement of Figure 330 for a 

of turbulent 

stirred 
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Figure 3.29. Spectral ranges in turbulence of moderate Reynolds number (Hanson and Cleasby, 1990) 
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Figure 3.30. Crude representation of average energy degradation path (Corrsin, 1961) 



www.manaraa.com

98 

OIRCCT OlSSiPATION 
IN IMPELLEA AEGION 

DIRECT DISSIPATION 
BY SHEAR 

o-

RECIRCULATION 
FLOW 

HEAT 

ISOTROPIC 

LARGE SCALE 

ANISOTROPIC ISOTROPIC 
( opproiifiMMly 
ifitrtiol aubronft) 
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vessel. Figure 3.29 is the three-dimensional turbulent energy spectrum and the 

dissipation spectrum. The y-axis is the kinetic energy contained in a specific eddy size 

at a fixed point in time which is a function of wavenumber and the x-axis is the 

wavenumber. The wavenumber described here is based on a concept from spectral 

theory and can be regarded as a "transform" (inverse of the vortex or eddy size, 1/d; d 

is the diameter of the vortex ) such that small wavenumbers correspond to large eddy 

sizes which are fewer in number and large wavenumbers correspond to small eddy sizes 

- much larger in number (or frequency) (Bradshaw et al., 1981; Corrsin, 1961; Hinze, 

1975). 

The variables and kj represent the eddy sizes which contain majority of the 

energy and dissipate majority of energy respectively. As seen from the figure, the 

maximum energy is contained in the low waveniraibers (corresponding to large eddy 

sizes). These large eddies are inertia controlled and are very little affected by viscosity. 

Frost and Bitte (1977) called these "energy bearing anisotropic eddies". This range of 

eddies is most frequently referred to as the "production scale eddies". These eddies are 

produced directly by the velocity gradients induced by the mixing equipment. The 

introduction of kinetic energy by the mixing equipment in the system is shown 

schematically in Figure 3.30. The left most box represents the kinetic energy in the bulk 

flow. This bulk flow kinetic energy is responsible for direct production of the largest 

eddies in the second box. 

In Figure 3.29, it has been shovwi that a peak occurs around kg in the low 

wavenumber region. The eddies wath wavenumbers around k^ represent the average size 
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of energy containing eddies. These large eddies then become smaller through 

mechanism of vortex stretching, and the energy of the large eddies is cascaded down to 

smaller and smaller eddies. Ultimately an eddy size is reached in which majority of 

energy dissipation takes place. This energy dissipation takes place in the eddies with 

wavenumber equal to or less than k^. This range is frequently called the "dissipation 

subrange"and is often referred to as Kolmogorov microscale. Also shown in Figure 3.29 

is the dissipation spectrum with eddies of different sizes. It is also seen that most of the 

dissipation is associated vdth the smaller eddy sizes. 

Figure 3.31 illustrates the approximate route taken by energy of the mean flow, 

to be dissipated as heat (or to be conserved as the internal energy of the fluid). Mean 

flow loses a part of its kinetic energy directly to viscosity (converted to heat, just like in 

laminar flow). The remaining fraction goes into the production of large eddies which, in 

turn, lose some energy directly to viscosity. The remaining part of the energy of large 

eddies goes into the energy of smaller eddies, which lose it to viscosity. Figure 3.32 

shows the above information in the same wavenumber space reference frame indicating 

the location of the region where energy of the mean flow is acquired by the eddies, the 

direction of energy transfer, and the region where the eddies lose their energy to 

viscosity. Kolmogorov speculated that small scale eddies, in a homogenous turbulent 

flow, lose the preferred orientation of the mean rate of strain, taking a universal 

structure of isotropy. Kolmogorov called it local isotropy. So he mentioned that true 

turbulent flow is homogenous and isotropic. Hinze (1975) states that even if the large 

scales of turbulence are strongly anisotropic, the small scale turbulence vdll tend to be 
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isotropic. 

Voke and Collins (1983) provided the description of energy transfer or eddy 

cascade as follows: 

The largest 'eddy' of all is the gross mean flow whose energy arises from 
imposed shear, pressure gradients, buoyancy or other body forces, constrained by 
boundary conditions. The mean flow loses energy through vortex formation or 
other mechanisms to eddies of next smaller size; these are the largest true 
turbulent eddies. They in turn lose energy to smaller structures through vortex 
stretching or tilting. The interactions become increasingly random and hence 
isotropic as the causal link with the original imposed force and the boundary 
constraints become more extended and tenuous. 

The energy cascade may continue through many orders of magnitude in a 
high Reynolds number flow. The transfer is overwhelmingly in the direction 
form lower wavenumbers to higher wavenumbers. (This is not the case in two-
dimensional turbulence - one key reason why true turbulence must be three-
dimensional). 

The cascade peters out eventually because the smaller eddies, although 
they contain less energy and involve smaller vortical velocities, involve higher 
strain rates and vortices than the larger eddies. The velocities are lower but the 
velocity gradients are larger. As a result, molecular viscosity comes into play an 
increasingly important role at higher wavenumbers, imtil eventually a scale is 
reached where nearly all the energy extracted from large eddies is dissipated by 
friction, with none left to pass on down the cascade to smaller scales. At this 
point the energy spectrum start to fall increasingly rapidly towards zero. (p. 122) 

Mixing: Mixing is the process by which a non uniform system is made uniform. 

An ideal mixture is generally conceived as having the condition where the concentration 

or other scalars are uniformly distributed throughout the system. Tatterson (1991) stated 

that mixing of one liquid into another liquid under turbulent flow conditions involves 

bulk motion or convective transport, turbulent diffusion, and molecular diffusion. He 

further cited the work of Beek and Miller (1959) who divided the mixing process up 

into three simultaneous and successive stages: (1) the distribution of one material into 
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another, (2) the breakup of this distribution into smaller portions, resulting in an 

increased surface area of contact, and (3) the molecular diffusion of materials into each 

other. Convective transport is usually considered macromixing, and turbulent and 

molecular diffusion is micromixing. 

Perfect mixing occurs when a molecule of one species in a mixture of two or 

more species finds the molecules of other species in all its neighboring positions. This 

ultimately occurs due to molecular diffusion when molecules of "A" (in a mixture of 

two, A and B) from an A-rich region travel toward the B-rich region due to 

concentration gradients and the same amount of B-molecules from a B-rich region travel 

toward the A-rich region to satisfy mass conservation law. Ultimately a time is reached 

when a molecule of "A" finds molecules of "B" in all its neighboring positions. But this 

process is slow and depends on concentration gradient and interfacial area. 

Hydrodynamic conditions under turbulent flow greatly increase the speed with which 

mixing is achieved by increasing the interfacial area between the materials and by 

maintaining high concentration gradients. Turbulence breaks bigger clumps of molecules 

into smaller clumps. 

Tatterson (1991) illustrated the concentration spectrum to describe the concept of 

micromixing mechanism in terms of statistical turbulence theory. In doing so, he 

mentioned two length scales; (1) Kolmogorov microscale which has been defined earlier 

and (2) Batchelor length scale (also called Batchelor's concentration length scale), 'nb= 

where DL is the diffusivity of the liquid (cm^ s ") and O) is the kinematic 

viscosity as defined earlier. In his interpretation, he divided the concentration spectrum 
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into an inertial-convective subrange, a viscous-convective subrange, and a viscous 

diflfusive subrange. The concentration spectrum he described is almost similar to the 

energy spectrum. If the concentrations contained in different sized eddies are plotted 

against the wavenumbers of those eddies, a plot similar to the kinetic energy versus 

wavenumbers (Figure 3.29) could be obtained. At the beginning stages of mixing, 

distributive mixing occurs where specie-rich solutions break up into large- and 

intermediate-sized eddies to form a macroscopically uniform mixture (Figure 3.33a, b 

and Figure 3 J4). This occurs at the smallest wave numbers (largest sized) eddies in the 

concentration spectrum and in the lowest portions of the inertial-convective subrange. 

The inertia! convective subrange is characterized by the largest-scale eddies down to the 

Kolmogorov microscale. In this subrange, convection is primarily responsible for mass 

transfer, and diffusion is not considered important. The scale of the unmixed material is 

reduced by eddy motions. This stage is also called the dispersive mixing where the 

specie-rich eddies become smaller but high segregation still exists between species. The 

viscous-convective subrange exists between Kolmogorov microscale and the Batchelor's 

concentration length scale , The eddies are subject to laminar strain which causes 

further scale reduction into the viscous-diffusive subrange which begins at the 

Batchelor's concentration length scale. In this subrange, diffusion and laminar strain are 

equally important and diffusion dissipates the concentration differences. The eddies have 

reached the smallest scales, and diffusion occurs on molecular level. 

Figures 3 J3a through d (Baldyga and Bourne, 1984b) represent above steps of 

mixing schematically. Figure 3 J3a refers to the relative movement of two points a and 
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A 

Figure 3.33. a,b) Large and small scale deformations within the inertial subrange; 
c) Fine scale, laminar deformations in viscous subrange (Baldyga and 
Bourne, 1984b) 
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Figure 3.33. (continued) d) Action of vorticity acting on fluid elements whose initial 
thickness is on the order of Kolmogorov microscale, 11^ (Baldyga and 
Bourne, 1984b) 

Figure 3.34. The process of dispersion (Brodkey, 1975) 
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p located far enough apart that their separation distance falls in the inertial subrange 

(left hand sketch). This relative movement of these two points far enough apart results 

in the deformation (middle sketch), so that the scale of the elements formed is reduced 

resulting in an independent movement of the elements (right hand sketch). Figure 3.33b 

depicts further deformation of a fluid element due to the action of inertial velocity 

fluctuations. Figures 3.33a and b refer to the inertial-convective subrange of the 

concentration distribution, where no micromixing occurs, but where the structures which 

v^dll subsequently participate in micromixing are formed. Figure 3.33c indicates finer 

scale with the occurrence of laminar deformations within the viscous subrange, whilst 

Figure 3.33d concentrates on a small region and follows the development of the 

smallest, most energetic, and concentration dissipative vortices. 

Amirtharajah and O'melia (1990) stated Danckwerts' (1958) definition of the 

scale of the segregation intensity, I^, in an analogous fashion to the definition of 

normalized turbulence intensity. When the instantaneous concentration at a point in a 

turbulent flow field is given by the summation of the mean value C and a fluctuating 

value c, as C = C + c and the rms concentration fluctuation is given as c-(c^)"^. Then 

the intensity of segregation can be given as 

ls = (cf/(Cor 3.23 

where c„' is the initial root mean square concentration fluctuation. The intensity of 

segregation defines the "goodness of mixing" and at unmixed condition Ij = 1, while at 

perfect micromixed condition = 0. 

Brodkey (1975) illustrated pictorially in Figures 3.34 and 335 the effect of 
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Figure 3.35. Influence of increased surface area and reduced dimensions on mixing 
(Brodkey, 1975) 
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turbulent dispersion on the mixing process. In these two figures he wanted to show how 

dispersion breaks down and substantially reduces the size of "solute fluid" (e.g., dye 

solution) particles in order to increase the area "exposed" to the solvent (e.g., water) and 

to increase the concentration gradients. Figure 3 J5 depicts the impact of size reduction 

on the overall rate of diffusion. The topmost row shows three different levels of 

dispersion of a dye, vidth increasing levels of dispersion from left to right. As can be 

seen from the figure, the filamentous structure of the solute elements in the third column 

provides them with much greater surface area and a greater dye concentration gradient 

than that of the elements in the first column. The elements in the middle column show 

an intermediate level of dispersion between the left and the right columns. 

The topmost row of pictures can be regarded as time '0' = t„ for diffusion. 

Pictures in subsequent rows can be considered the result of diffusion at times t,, tj, tj, 

and t4 respectively where t4> t3> tp't, > t^. This picture illustrates that the "solute fluid" 

elements in third column diffuse much faster than the elements in the first or second 

columns, causing the system to achieve a higher level of homogeneity within the same 

time period than the elements in first and second columns. 

Vortex stretching: In the above subsection, it has been seen that energy is 

transferred in a turbulent flow field from large eddies to small eddies through the 

mechanism of vortex stretching. 

Srivastava (1988) illustrated the phenomenon of conservation of vorticity in 

Figure 3 J6 which shows a cylindrical vortex filament (much elongated form) before 
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Figure 3.36. Principle behind energy transfer from large eddies to small eddies 
(Srivastava, 1988) 
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and after stretching. Before stretching, the diameter, height, and angular velocity were 

To, ho, and 0)o respectively and the same were r,, h,, and (o, respectively after stretching. 

Since the filament is stretched in height, h, = (OT„^h„)/(7cr,^) = ho(ryr,)- > h,,, as a result 

r^ > r,. The angular momentum (the moment of the momentum about the axis of 

rotation) of the cylinder (before stretching), L„, is given as 

L„ = /o (27crh„dr)(tD„r)r = (l/2)7th„pO)„ro'' = I„to„ 3.24 

Where is the moment of inertia. 

After stretching, the angular moment of filament, L, is given as 

L, = (l/2)7th,pto,r,'' = I,CO, 3.25 

From the principle of conservation of angular momentum, = L, i.e. 

(l/2)7ch„pa)or„^ = (l/2)7th,pa),r,'' 

=> (l/2)jth„pcoj<,'' = (l/2)7ch„(r</r,)^0),r,'' since, h, = h„(ryr,)^ 

After cancelling the like terms and rearranging 

= (VrOX 3.26 

Since r^ > r„ co, > (Oo-

Now if we consider the kinetic energy; this can be given before stretching as 

K„ = (1/2)I„(0„^ = (1/2)L„(0„ 3.27 

and after stretching the kinetic energy is given as 

K, = (1/2)1,(0,^ = (l/2)L,co, 3.28 

Since = L, and (o, > (Oq, it implies that K, > K„ or, the process of stretching has 

resulted an increased kinetic energy of the rotating cylindrical vortex filament. 

The concepts of vortex stretching have been shown in Figure 331 (Tennekes 
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and Lumley, 1972) and Figure 338 (Frost and Bitte, 1977). By establishing relation 

between the time rate of change of the vorticity (angular velocity in a vortex or eddy) 

fluctuation and the fluctuating rate of strain, they developed the expressions as follows: 

0), = cOoe", (Oj = tOoC" 3.29 

0),^ + co,^ = 2c0o^cosh2st 3.30 

where s is the strain in the direction of vorticity and t is the time. This is for two 

dimensional strain and for the sake of simplicity, it has been assumed s,, = -S22 = s and 

S12 ~ S2, = 0. Positive strain for expansion and negative strain for compression, t is the 

time. From the above expression in Equation 3.30, it is seen that the total amount of 

vorticity increases for all positive values of st. That is when a vortex is expanded or 

stretched, its angular velocity and kinetic energy increase. The vorticity component in 

the direction of stretching, 0)„ increases rapidly and that in the direction of compression, 

©2, decreases slowly at large st. 

Figure 3J8 (Frost and Bitte, 1977) illustrates the action of vortex stretching 

which causes the upper vortex segment (which is larger) to stretch and the lower vortex 

segment to compress, causing a net transfer of energy from the bottom vortex segment 

to the top segment. This top vortex segment, in turn, does the same thing to another 

vortex segment of lower size and so on. Moreover an extension in one direction 

decreases the length scales and increases the velocity in other two directions, which 

stretch other elements of fluid with vorticity components in these directions as illustrated 

in Figure 3.39 (Frost and Bitte, 1977). This figure shows that two parallel vortices 

stretched in the x, direction result in an increase in Uj in the positive Xj direction in an 
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Figure 3.37. Vortex stretching in a strain-rate field: (a) before stretching, (b) after 
stretching (Tennekes and Lumley, 1972) 
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Figure 3.38. Concept of vortex stretching (Frost and Bitte, 1977) 
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Figure 3.39. Vortices stietched in the Xi direction increase the strain rate bnjbx 
(Frost and Bitte, 1977) 
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upper plane and in the negative Xj direction in lower plane. Thus an increasing strain-

rate field is generated which is experienced by vortex, 0)2, causing it to stretch. As it 

stretches, a new strain field is created, which in turn stretches other vortices, and so on. 

This process continues, with the length scale of the augmented motion getting smaller at 

each stage, with the energy transfer from higher scale to lower scale (Frost and Bitte, 

1977). 

3.6.3. Turbulent mixing 

As it has been seen earlier that mixing is one of the features that takes place in a 

turbulent flow field. Bourne (1982) describes mixing of two components (A and B) in a 

turbulent flow field as follows: 

1. The B-rich solution stream breaks up into large B-rich eddies, which exchange 

position with A-rich eddies to form a uniform mixture macroscopically. This process is 

referred to as distributive mixing and at a scale much smaller than this eddy size, no 

mixing occurs. 

2. The large eddies of step 1 decay in size and form a finer grained dispersion 

through the effect of turbulent shear. Yet the mixture remains highly segregated at the 

molecular level, although some diffusion and reaction start at the boundaries of large 

eddies. The mixing in this phase is termed dispersive. 

3. Diffusion within the finely dispersed structure of step 2 operates over short 

distances and proceeds to randomize the substances at the molecular scale. The result of 

diffusive mixing is termed a homogenous mixture. 
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The above three steps may occur simultaneously to some extent. Steps 1 and 2 

are often termed by the researchers as convective mixing (macromixing) or turbulent 

diffusion, and being brought about by flow, turbulence, and eddy diffusion, whereas 

mixing at molecular scale or micromixing belongs to step 3. As shown in Figure 3.35 

(Brodkey, 1975), turbulence takes us from the first column to the third column and in 

this column, molecular diffusion takes us from top row to the bottom row. All in all, the 

combination of turbulence with molecular diffusion yields a much better mixing in a 

much shorter time than would have been possible with just molecular diffusion. 

Scale of segregation, and intensity of segregation, have been defined 

earlier. The former is a measure of the size of unmixed clumps of pure components. 

This is a measure of some average size. As the clumps are pulled and contorted, the 

scale of segregation is reduced; this would be going form left to right along the top of 

Figure 3 J5. The intensity of segregation describes the effect of molecular diffusion on 

the mixing process. It is a measure of the difference in the concentration between 

neighboring clumps of fluid (Brodkey, 1975). Thus moving down the columns in Figure 

3.35, the concentration difference between the clumps and the inter-clump region 

decreases as molecules of the dye diffuse out of the clumps. This corresponds to a 

decreasing intensity of segregation. So while a decrease in the intensity of segregation 

(i.e., a more uniform and non-clumpy mixture) can only be created by molecular 

diffusion, turbulence is required to help speed up the process by very rapidly reducing 

the scale segregation (smaller clumps of fluid). 

Tennekes and Lumley (1972) have shown that time taken by molecular diffusion 
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alone to disperse a transported quantity (e.g., heat) uniformly through a space, t„, is 

much longer than the time, t,, that would be required to disperse the same quantity 

through the same space by turbulent diffusion. For a gaseous substance, they showed 

that the ratio of t/tn, is inversely proportional to the Reynolds number R^, which is an 

indicative of the intensity of turbulence. So when R^ is high, t/t^, is low and vice versa; 

implying that at high Reynolds nxmiber, the time scale for "turbulent diffusion" of a 

substance over a given length scale is much smaller than the time scale for molecular 

diffusion alone. 

The mechanisms involved in turbulent flow field which enhance mixing are as 

follows (Patterson, 1985; Frost and Bitte, 1977; Srivastava, 1988 and Chakrabarti, 

1991): 

1. Shear: The process of continuous distortion (stretching in one direction and 

contraction in the other) of fluid elements by shear speeds up the overall process of 

diffusion resulting in an enhanced time rate of mixing. Figure 3.40 illustrates the 

thinning of two different shapes of fluid element (rectangular and circular). Part(b) of 

the figure shows the fate of a dye spot in a viscous fluid subjected to a rectilinear flow, 

in the absence of molecular diffusion. With increasing time, the circular spot is 

transformed first into an ellipse, then into a thin long finger, similar to the behavior of 

the thinning of rectangular fluid element shown in part(a). The spot, in this finger-

shaped form, possesses a much larger interfacial surface area than the circle (at time = 

0). As a result of the distortion process the blob shrunk in one direction which increased 

the probability for the fluid element at the center of the circle to diffuse out of the blob 
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Figure 3.40. Role of shear in tuibulent mixing, (a): Thinning of a rectangular fluid 
element in a rectilinear shear flow field (Hamby et al., 1985). (b): 
Distortion of a spot of dye (in the absence of molecular diffusion) in a 
viscous fluid subjected to a rectilinear shear flow field (Srivastava, 1988) 
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into the bulk fluid through that direction - making the overall process of diffusion much 

faster. So it is clear that the process of distorting a dye spot by shear can enhance the 

time rate of mixing. 

2. Elongation and vortex stretching: As has been mentioned earlier that energy 

is constantly being transferred from large eddies to smaller ones through the process of 

vortex stretching. From Figure 3.39 it can be seen that a new strain field is created due 

to stretching of one vortex, which in turn, stretches other vortices, and so on. This 

process continues, with the length scale of the augmented motion getting smaller at each 

stage, with the energy being transferred from large scale to smaller scale. Also from 

Figure 3.36 it can be seen that thinner and longer vortex tubes are constantly being 

formed and dissipated. If a blob of dye is inserted in a turbulent flow field, some of it is 

likely to be trapped in a vortex tube which gets elongated and thinned. The deformation 

of the vortex tube containing this dye will increase the interfacial surface area and 

reduce the distances which the molecules must travel before mixing with the 

surrounding fluid. As a result an increase in the time rate of mixing of the dye with the 

bulk solution via molecular diffusion occurs. 

The process of elongation, mentioned above, continues to distort the fluid 

elements to dimensions of the order of the Kolmogorov microscale. As the vortex tube 

is dissipated by the viscous forces, it has a much lower Reynolds number than before, 

and thus the time scale for transport of the dye (over a given length scale) by molecular 

diffusion is smaller than the transport by fluid motion. A shear field exists in a 

dissipating eddy which distorts the dye element as shown in Figure 3.40. Besides, the 
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flow has very low Reynolds number indicating that transport by diffusion continues to 

dominate as the eddy gets smaller in size. 

Both the above mentioned mechanisms act simultaneously in a turbulent flow 

field, resulting in an enhanced time rate of mixing of dye with the bulk fluid. The fluid 

elements get engulfed in eddies and go through the process of elongation, shear, and 

molecular diffusion over and over again. Even though the eddies containing the fluid 

elements get dissipated, the fluid elements don't come to rest, the fluid elements become 

the part of the bulk flow and other eddies for the next distortion process. 

3. Bulk flow and the velocity gradients in the bulk flow: Bulk flow is 

considered to be the largest possible eddy and represents the length scale at which the 

energy is being fed into the system (Hanson, 1989). This bulk flow generates the spatial 

velocity gradients in a turbulent flow field which in turn cause the particles initially 

close together to become dispersed and separated. The mixing by bulk flow can be 

considered as the largest macroscale mixing. 

3.6.4. Turbulent mixing and chemical reactions 

So far we have talked about the mixing of a dye into the surrounding fluid under 

a turbulent flow field in a non-reacting system. If the chemical reaction takes place as 

the fluids mix, then the scenario is much more complicated. The rate at which a reaction 

between A and B proceeds depends on how rapidly encounters between A and B 

molecules take place. In general, chemical reactions can be divided into two categories. 

Slow reactions and fast reactions. Slow reactions are chemically controlled and the rate 
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depends on the probability that an encounter between reacting molecules will lead to 

chemical reaction. Turbulent mixing may not be all that important as the reaction 

kinetics dictate the outcome of the process. So, even if the reactants molecules in a slow 

reaction are uniformly distributed throughout the system, the speed of the reaction 

would not change radically because the rate is controlled by the thermodynamic 

condition (energy barrier) which prevents reactants molecules from reacting with each 

other. That is, it will take a longer time for the reactants to react and form the products 

than the time needed to mix the reactants uniformly throughout the system. Diffusion 

time is much shorter than the reaction time. The rate of these reactions can only be 

enhanced by changing the thermodynamic conditions (changing the temperature or 

reducing the energy barrier through the use of a catalyst). 

Fast chemical reactions are fast relative to mixing, e.g., neutralization, 

precipitation, combustion and hydrolysis (as in coagulation), and are characterized by 

steep concentration gradients on the molecular scale, which ensure that the rate of 

reagent diffusion matches the high consumption rate due to the reaction. Reactions occur 

almost with every encounter between reactant molecules and are said to be diffusion 

controlled. The turbulence and the resulting mixing play as important a role as the 

reaction kinetics in these reactions where the rate at which reactant molecules can come 

together is governing the overall speed and outcome of the reaction. 

O'Brien (1975) quotes Toor's analysis to better understand how the role of 

turbulence changes with the inherent kinetics of a given chemical reaction as follows: 

From a practical point of view, the most useful single parameter for 
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describing the role of turbulence on chemical reactions is a ratio of time scales 
(a time scale characteristic of the kinetic scheme to a time scale 
characteristic of turbulent mixing). In a single-step, irreversible reaction, the 
inverse of the reaction rate constant in conjunction with characteristic 
concentration can represent the chemical reaction time; whereas, the time for the 
decay of fluctuations of a scalar field in the turbulence might represent the 
mixing time adequately. Three regimes suggest themselves: 

Th® slow reaction, 
2. Ti/t„ 0(1), The moderate reaction, 
3- V'^ni U The very rapid reaction. 
In case one, it is abundantly clear, at least when approximate statistical 

homogeneity applies, that turbulence will induce chemical homogeneity before 
any significant reaction will occur and the fluctuations in concentration of any 
species at a point will generally be negligible compared to the mean 
concentration in determining the rate of reaction. 

In the second case, complex coupling between the turbulence and the 
reaction is to be expected even under statistically homogenous conditions. 

In the third case, the behavior depends crucially on the nature of the 
reaction, as we shall see later. In particular, for multispecies reactions in which 
the species are not uniformly distributed in space, the progress of the reaction 
will be diffusion limited since molecules must first diffiise to the same point 
before they can react. It is rate of molecular diffusion, enhanced by turbulence 
through stretching of isoconcentration lines, which must control the rate of 
progress of the reaction, (pp. 23-24) 

The effect of turbulent mixing on chemical reactions will be illustrated in following few 

paragraphs. Based on the direction of reaction, chemical reactions are divided into two 

categories; reversible and irreversible. The main chemical reaction (hydrolysis) that 

occurs in a coagulation-flocculation process is considered to be irreversible in nature by 

most researchers. The irreversible reactions can be divided into following types: 

1. Simple reaction: When two reactants A and B react to give products as 

A + B —> products, is simplest in nature. The speed of product formation depends on 

how fast the encounter could be made between the reactant molecules by breaking the 

solvent cage as shown in Figure 3.41. If thermodynamic conditions do not restrict the 
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Figure 3.41. Diffixsional encounter between reacting solutes A and B in a solvent 
(Adamson, 1979) 
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reaction to occur, it is the rate of encounters which governs the net rate of a reaction. 

This is where the diffusion ability of the solute molecules in a given solvent comes into 

picture. Solute molecules having a larger coefficient of diffusion, D, will be able to have 

more encounters in a given time period than the molecules with smaller D. Also for 

reacting molecules with fixed D, the diffusion ability can be increased by reducing the 

size of the solvent cage, the packets of reacting materials, thereby increasing interfacial 

surface area. All this can be done by higher turbulence induced by intense mixing. 

2. Parallel reaction: In parallel reactions, reactants can undergo two or more 

reactions independently and concurrently where two or more species may react through 

alternative paths to give two or more different product species (simple parallel reactions) 

as shown below: 

When two or more reactant species compete for another reactant, the reaction is called 

competitive parallel reaction and can be illustrated as follows (Hill, 1977): 

A  +  B  - > R  

A + C  - > S  

Mixing is important for the competitive parallel reaction. If the reaction (A + B R) is 

faster than the reaction (A+ C —> S) and R is the desired product, then high intensity 

mixing will favor the formation of R over S. 

3. Series reaction: In this type of reaction, one or more of the products formed 

initially undergoes a subsequent reaction to give yet another product. Significant 
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amounts of both the intermediate and the final product species will be present during the 

normal course of the reaction. The general scheme for these reactions may be 

represented as 

[A...] ^ [B...] [C...] 

where the quantities in brackets may denote more than one molecular species (Hill, 

1977). Often the ultimate product formation depends on the type and relative 

distribution of the reactants. The relative distribution of reactants depends on the mixing 

intensity or how widely the reactants are distributed in the system. So mixing ultimately 

determines the nature and speed of the ultimate product formation. These reactions 

include condensation polymerization reactions, partial oxidation reactions, and reactions 

in which it is possible to effect multiple substitutions of a particular functional group on 

the parent species (mono-, di-, tri-, etc. substituted products) (Hill, 1977). 

4. Series-parallel or competitive-consecutive reaction: These types of reactions 

may be represented in general form as: 

A + B —> R the reaction rate constant k, 

R + B S the reaction rate constant kj 

A and B react to produce R. R, however, competes with A in reacting with B to form S. 

Also, since it is necessary for the first reaction to occur and form R before the second 

reaction can take place, the reactions are consecutive. Thus, overall, these two reactions 

are called competitive-consecutive reactions. This reaction set may be regarded as 

parallel reactions with respect to consumption of species B and as a series reaction with 

respect to species A, R, and S. Overall they are also called series-parallel reaction. 
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Common examples include the nitration and halogenation of benzene and other organic 

compounds to form polysubstituted compounds (Srivastava, 1988 and Hill, 1977). 

In a well mixed A system, where B is in limited supply (i.e., B is the limiting 

reagent), the first reaction is favored since B will react with A and R will be formed. 

Once R is formed, then in a well-mixed A system, R will only be with A since, all the 

B has already reacted with A to form R. But in a poorly mixed system, after R has been 

formed, B will still be available to react and a portion of available B will react with R 

to form S. 

Srivastava (1988) performed a thought experiment to illustrate the effect of the 

mixing intensity on the product distribution of the above reaction set. He considered two 

cases; 

1. Case with no mechanical mixing: If a blob of B is introduced in a vessel full 

of A, the interfaces of blob B are the only places where A and B molecules can react, 

because that is the only place from where molecules of B can diffuse into the bulk 

solution of A, meet them and react. So any R formed in the first step of this reaction 

sequence is very likely to diffuse equally in all directions (including towards the blob of 

pure B), resulting in a fraction of the total R reacting with B through the second step of 

the competitive-consecutive reaction set to form S. 

2. Case with extremely intense mixing: In this case, turbulence breaks down the 

blob of pure B into smaller elements. As the blobs are reduced in size, diffusion spreads 

B molecules into A in a much shorter time period than in the previous case, resulting in 

a relatively better (more uniform, as compared to previous case) spatial distribution of A 
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and B. Thus, any R formed by the reaction of A and B has much less B to react with 

than in the earlier, unmixed case. Therefore, compared to first case, more R will be 

formed and very little S. In the above discussion the relative speed of the reaction steps 

was not considered. When one reaction is much faster than another, the presence of 

turbulence and its diffusive action complicates the situation even more by tilting the 

balance in favor of the faster reaction - particularly if the time scale of reaction is 

comparable to the time scale of turbulent diffusion. 

Baldyga and Bourne (1984a,b, and c), Belevi et al. (1981), Bourne et al. (1981a 

and b). Bourne and Dell'ava (1987), and Rice and Baud (1990) performed several 

theoretical and experimental studies on mixing and fast chemical reactions. In doing so, 

they employed the above mentioned competitive-consecutive reaction. They defined a 

term called the product distribution parameter, which is a measure of the degree of 

segregation in the reaction zone and can be defined as follows: 

Xs = moles of B consumed forming S/total moles of B consumed 

~ 2Cs(/(2Csf+ Cjy) 

Csf = final concentration of product S, 

final concentration of product R. 

So a well mixed system will form more and more R and less and less S and product 

distribution parameter, X^, will approach '0' where in a poorly mixed system the 

opposite thing will happen and will approach '1'. All the above mentioned researchers 

have found that this product distribution parameter is a fvmction of several 

dimensionless group such as, stoichiometric ratio of the reactants, N^o/Nbo; tlie ratio of 
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the reaction rate constants, kj/kj; Schmidt number, S^, the volume ratio, a = V^A^b; the 

mixing modulus, M; and the stretching parameter, ji. It also depends on some physical 

factors such as, impeller speed, diameter and width of the impeller, location of feed 

point in the reactor, mode of operation, etc. M and |5 can be defined as follows (Bourne, 

1982; Bourne and Dell'ava, 1987; Rice and Baud, 1990; and Chakrabarti, 1991) 

M = k^CB^S.^/D and P = YV/D 

Cbo = Initial concentration of reactant B (mol cm'^), 

5o = the size of the laminae through which the diffusion and reaction take place (cm). It 

is also called the initial half thickness of the fluid layer or the radius of a spherical 

reaction zone and defined as (1/2)t||j, where tik is the Kolmogorov microscale (Rice and 

Baud, 1990 and Baldyga and Bourne, 1984c and Bourne et al., 1981b), 

D = diffusivity of reactant B into A (cm^ s '), and 

y = the shear rate experienced by the laminae (s"'). 

Before discussing the effect of the above factors on product distribution parameter, 

different regimes in which chemical reactions take place will be discussed briefly as 

follows (Bourne et al., 1981a and b, and Belevi et al., 1981); 

Molecular diffusional regime: This is the regime where the reaction rate is 

independent of the rate constant (k) and controlled by the molecular diffusion. This 

occurs in extremely fast and instantaneous reactions. In the molecular diffusional 

regime, diffiision entirely determines the reaction rate, the reaction zone shrinks from 

the whole vessel to a plane where A and B can not coexist, i.e., their concentrations 

sink to zero. The yield of the intermediate R in a competitive consecutive reaction is 
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zero under these circumstances and therefore Xj = 1. 

Chemical regime: In the chemical regime, reaction rate is dependent on the 

reaction rate constants and the reagent solutions mix completely before the reaction has 

occurred to any significant extent. Reactions occur in the entire vessel and for a given 

set of reaction conditions, the smallest amount of secondary product (S) is formed and 

the minimum value of is found in this regime for competitive consecutive reactions. 

Mixed regime: In the mixed regime, the product distribution parameter (X^) of a 

competitive consecutive reaction depends partly on the chemical reactions (e.g., rate 

constants) and partly on diffiisional (e.g., agitation, viscosity and diffiasivity of reactants 

in the solutions etc.) factors. The quantity of the secondary product (S) formed falls 

between the values for the chemical and the diffusional regimes. Thus in the mixed 

regime, falls in an interval from a little more than zero to little less than unity 

(Bourne et al., 1981a and b, and Belevi et al., 1981). 

The factors affecting the product distribution parameter (X,) are described as 

follows: 

1. Nao/Nbo! This is the initial stoichiometric ratio of A to B. An increase in 

stoichiometric ratio suppresses the formation of secondary product, S, and thus 

decreases X^. Chakrabarti (1991) mentioned that to form significant quantities of R, and 

dramatically reduce X^, the initial stoichiometric ratio should be higher than 0.5 e.g., 

around 1. This value may change for different reactants. Ratios greatly in excess of 1 

cause little 'S' to form and smaller X^ value, the price being a smaller conversion of A. 

This change of X^ with N^o/Nbo is fully suppressed in the molecular diffusional regime, 
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where is always 1, as mentioned before. 

2. ki/k^: An increase in this ratio of rate constants promotes the formation of R 

over S. The trend is, however, greatest in the chemical regime, weaker in the mixed 

regime and entirely disappears in the diffusional regime, where a reaction plane forms. 

For a given pair of competitive-consecutive reactions, kj/kj is controlled by 

thermodynamic conditions and can only be varied slightly by changing the temperature 

over the normal operation range. 

3. Volumetric ratio a (V^A^g): In the chemical regime the volume ratio of the 

reactant solutions has no effect on product distribution; only the stoichiometric ratio is 

relevant. However, a plays a significant role in the mixed regime where volumetrically 

smaller feed stream is supposed to be dispersed in a turbulent and well-mixed 

environment. The assumption of better dispersion with lower a agreed well with 

experimental results. Thus the effect of increasing a in the mixed regime raises the 

value of Xj. For a constant stoichiometric ratio, a increases with the decreasing volume 

of B-solution with higher concentration. The interfacial surface area for diffusion falls 

causing a steeper concentration gradients and thus more formation of the secondary 

product S. 

4. Mixing modulus, M: This is proportional to the half life times for diffusion 

(time for reactants to difftise through half the Kolmogorov microscale, and 

second order reaction. Low values of M characterize the chemical regime, where no 

concentration gradients occur. Sufficiently high values of M correspond to 

diffusion regime, with a narrow reaction plane formed where A and B meet and react 
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instantaneously. The mix regime falls between these limits - concentration gradients 

extend over a finite regions and the reaction is influenced by chemical as well as 

physical factors. Belevi et al. (1981) showed that for a CSTR, the chemical regime 

corresponds to M = 0, the diffiasional regime corresponds to values of M > 10"* and the 

mixed regime extends approximately over the range 10"^ < M < 10'*. Baldyga and 

Bourne (1984c) showed that increases viath increasing M in a semibatch reactor. 

5. Stretching factor P*. This dimensionless constant is proportional to the ratio 

of the half times for diffusion (8o^/D) in the absence of chemical reaction and for 

shrinkage ( — y'). Physically, P is a stretching parameter, proportional to the time 

needed to mix the reaction zone by diffusion alone and inversely proportional to the 

time required to deform it. Stretching clearly reduces the formation of S relative to the 

unstretched case (i.e., the effect of inhomogeneity on product distribution is smaller), all 

other conditions being equal. Thus higher value of p gives lower value of X^. 

The physical factors that influence the product distribution parameter can be 

described as follows: 

1. Stirring speed: Bourne et al. (1981b) and Bourne and Dell'ava (1987) showed 

from their experimental results that product distribution parameter is inversely 

proportional to the impeller speed. Higher impeller speed generates higher turbulence 

which in turn, reduces the size of the diffusion reaction laminae, 5^, and reduces the 

value of M. As a result less secondary product S is formed as well as a lower X^. 

Bourne et al. (1981b) found that viscosity also influences the product distribution 

parameter, X^, in a CSTR and stated. 



www.manaraa.com

133 

The improvement in mixedness ... with rising turbine speed is unlikely to reflect 
faster blending, in the sense of a shorter circulation or mixing time. If this were 
so, then in the turbulent region (Rj > 3900 here) a change in viscosity, which is 
known from many measurements not to influence the circulation time, would 
have had no effect on Xj. Macroscopic blending through convective (eddy) 
diffusion does not seem to be decisive for homogeneity at the molecular scale, 
(p. 1656) 

Rice and Baud (1990) stated somewhat different results in this respect. 

Interestingly, they foimd reproducibly that X^, as a function of stirring speed, N, went 

through a minimum (0.01) representative of nearly perfect mixing at N = 500 rpm and 

then increased somewhat at N = 700 and 900 rpm. The reason behind this, they stated, 

is the extreme vortexing (lowering of free surface in the reactor) in this high N range 

causing the feed tube location to be nearly a surface feed point even though they 

injected B-solution in the impeller discharge stream. Location of feed point is also a 

physical factor that influences the product distribution. They used a Pfaudler-style (name 

comes form the arrangement of the baffle) batch reactor with three-blade retreat curve 

turbine impellers (Figure 3.42). Figure 3.42 also shows the position of B-solution feed 

points into A solution already present in the reactor. In this figure z is the vertical 

distance from the reactor bottom and H is the height of the liquid inside the reactor. 

They also found that decreases with increasing diameter and width of the impeller. 

2. Location of feed point: Rice and Baud (1990) employed nine locations 

(combination of A, B, C and z/H = 1.0, 0.6, 0.2 in Figure 3.42) of feed point for 

injecting B-solution into A-solution already present in the reactor. They found that 

was independent of lateral position but was highly dependent on vertical position. 
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Figure 3.42. Impeller shape and B-solution feed point location (Rice and Baud, 1990) 
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Minimum was obtained when feeding was done in location 3, near the impeller (z/H 

= 0.2)and the maximum was found when the feeding was done in location 1, near the 

surface (z/H = 1.0). Bourne et al. (1981b) observed that the maximum value of was 

found when the feed was made near the surface (they designated this location position 

III; no figure is shown here), whereas the minimum was found not near the impeller 

(called position II), but somewhere below and inside the tip of the impeller (called 

position I). From their turbulence intensity measurement they attained the highest 

intensity in position II. Based on these experimental results they stated, 

The difficulty with injecting into the highly turbulent, radial jet leaving 
the turbine (position II) is probably that the time of exposure of the fresh feed to 
this turbulence level is short; the level falls rapidly as the jet hits the wall, is 
deflected axially and slows down. On the other hand, position I offers some 
chance of macromixing and formation of microeddies as the streams move 
axially and radially into and through the turbine, before reaching position II. (pp. 
1658-1659) 

The authors employed a CSTR mode of operation and introduced both A and B 

through two different feed pipes simultaneously. The feed pipes were located 

symmetrically on the opposite side of the impeller shaft for all positions (I, II and III). 

David and Clark (1991) also illustrated that is very much dependent on stirrer 

speed and the location of feed points (Figure 3.43). They worked with some basic-

barium complex (A) and the HCl (B) in a competitive-consecutive reaction. 

3. Type of injection: David and Clark (1991) showed that the type of injection 

of reactant B influences the product distribution parameter (Figure 3.44). They 

indicated that the varies inversely with the square root of the power input per unit 
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Figure 3.43. Product distribution parameter versus rotation speed in a stirred tank for 
five different points of addition of reactant B (HCl) (David and Clark, 
1991) 
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Figure 3.44. Product distribution parameter versus power delivered per unit mass of 
fluid for addition at point 5 (defined in Figure 3.43). Comparison of the 
performance of two types of impeller and two types of reactant B 
injection method (David and Clark, 1991) 
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mass in the case of dropwise addition (slow injection) and that varies inversely with 

the one third power of the power input per unit mass for pulse addition. So for product 

selectivity and better mixing efficiency slow addition is better than the pulse addition. 

3.6.5. Turbulent mixing and crystallization 

Marcant and David (1991) working with calcium oxalate monohydrate batch 

precipitation have observed a significant impact of mixing on the crystallization process, 

especially the crystal size distribution (CSD). He also summarized some phenomena 

involved in the crystallization process and defined by various other researchers (Nyvlt et 

al., 1985; Marchal et al., 1988; Kulov et al., 1983; Matz, 1985 and Nyvlt and Karel, 

1985). Those phenomena can be described as follows: 

1. Nucleation: Solid formation starts with the appearance of very small crystals 

called nuclei. This process involves mainly homogenous primary nucleation during the 

first stage of precipitation where there are high values of supersaturation and 

heterogenous secondary nucleation when the molar concentration of crystals becomes 

significant. 

2. Growth: Nuclei or small crystals grow by continuous collection of solute 

fi-om solvent as long as supersaturation remains positive. It is often considered as a 

combination of two steps; mass transfer through crystal boundary layer and then 

integration to the crystal lattice. 

3. Ostwald ripening: This is based on the Gibbs-Thomson-Oswald-Freundlich 

law, which states that crystals smaller than the certain limiting size of nuclei have 
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negative local supersaturation resulting in their dissolution (Kulov et al., 1983 and Matz, 

1985). 

4. Agglomeration and aggregation: Binary encounters of crystals and 

subsequent adhesion also lead to crystal growth (Nyvlt and Karel, 1985). 

From their extensive study, Marcant and David (1991) observed that three factors 

are of prime concern in crystallization process. From their own experimental results and 

fi-om the results of other researchers, they illustrated qualitatively the resulting effect of 

stirrer speed and feed point location in Table 3.9. The arrow in positive 45° (/»)indicates 

the enhancement of various crystal formation processes and the increase of crystal 

diameter and that in negative 45° (N)indicates the rate decrease of the various crystal 

formation processes and the reduction of crystal diameter. Horizontal arrow indicates no 

influence and ? indicates undetermined influence. They also stated that changes in feed 

point location are much more important for micromixing effects and crystallization than 

modification of stirrer speed. 

The other important factor that has had influence on crystallization process was 

the stirrer (impeller) type. They used two types of impeller: a Rushton turbine and a 

pitched blade impeller. The pitched blade impeller increased the overall crystallization 

rate and produced more crystalls of smaller size than the Rushton turbine. The pitched 

blade also achieved more conversion of solution phase into the crystalline phase. 

Conversion was determined by measuring the electrical conductivity of solution which 

decreased wdth the disappearance of solution (ionic) phase of the salt into the solid 

crystalline phase. Measured mass averaged diameter of the crystals was similar for both 
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Table 3.9. Influence of mixing variables on precipitation processes (Marcant and David, 1991). 

Rapid Local Slow Processes Averaged Overall 
Process over the Tank Effect 

Primary Secondary Growth by Diffiisional Agglo­
Nucleation Nucleation Integration Growth meration NC? 

Same Feed Pt. 
Increasing Enhanced Enhanced No Influence Enhanced Enhanced D? 
Stirring Speed D^., r^ Nc-", D^., r^ N j — D — > ,  r — >  N j — D - f ,  r — ^  NjNi, D--, r r^ 

Same Stirring Enhanced No No No No NC-
Speed, Addition Influence Influence Influence Influence DN 
in a more Tur- Dv, r-« Nj—>, D-», N c — D - » ,  N,-^, D^, Nc-», D— r^ 
-bulent Zone r—> r-» r-^ r—> 

Nj = number of crystals per unit volume; D = crystal mean diameter; r = overall crystallization rate. 
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the stirrers until 5 minutes of mixing, but beyond that two-fold increase was observed 

for Rushton turbine over the pitched blade stirrer. It should be noted that both the 

impellers were stirred at the same speed (i.e. 400 rpm). So, energy input per unit mass 

of the solution was not the same for both the cases. 

In determining the effect of mixing on the precipitation of barium sulfate from 

aqueous feedstreams of barium chloride and sodium sulfate in a mixed suspension 

mixed product removal (MSMPR) reactor, Fittchett and Tarbell (1990) observed that 

impeller speed and the feed concentration influenced the precipitation process. Growth 

rate (jim/s), mean particle length (nm) and mass transfer coefficient of materials from 

bulk solution onto the particle surface increased with impeller speed (ranged from 0 to 

1200 rpm) and the shape of the particle varied with the feed concentration of one of the 

reactants. The reactor was operated in the steady state condition, and a two-blade 

pitched blade axial impeller with a pitch angle of 62 degree was used. The crystal 

morphology was studied using a scanning electron microscope (SEM) and a Hiac/Rayco 

model 4300 particle size distribution analysis system equipped with a Hiac/Rayco model 

ASAP aspirating sampler and a model CMH-150 high particle concentration sensor. The 

mixing was done for a very brief period (up to 38s maximum) during which only the 

primary nucleation was supposed to take place. 

3.6.6. Turbulent mixing and coagulation 

From the above discussions, it is understood that the fast chemical reactions are 

diffusion controlled and extremely sensitive to mixing. Previously it has also been seen 
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that based on pH and coagulant concentrations, different hydrolysis species are formed 

when metal coagulants are added to water. Also in water treatment, coagulation by 

metal salts occur predominantly by two mechanisms: (1) adsorption of hydrolysis 

species on the colloid surface, causing charge neutralization; and (2) sweep coagulation, 

where interactions occur between the colloids and the precipitating hydroxide. Figure 

3.45 (Amirtharajah and Tambo, 1991) illustrates the production of intermediate kinetic 

hydrolysis species of alum prior to formation of the aluminum hydroxide precipitate and 

the two mechanisms of coagulation that are dependent on the chemical species formed. 

The reactions that precede charge neutralization with alum are extremely fast; they 

occur within microseconds without the formation of Al(III) hydrolysis polymers and 

within Is if polymers are formed. The formation of aluminum hydroxide precipitate 

before sweep floe coagulation is slower and occurs in the range of 1 to 7s. 

It appears from Figure 3.45 that the hydrolysis steps of metal coagulants are 

thus similar to multi-step consecutive (series) reactions and their competitive nature in 

distinguishing between two modes of coagulation made them susceptible to mixing. The 

speedy reaction times imply that for charge neutralization, it is imperative that the 

coagulants be dispersed in raw water stream as rapidly as possible (less than Is) so that 

the hydrolysis products that develop in 0.01 to Is will cause destabilization of colloid. 

In contrast, hydroxide precipitate formation, in sweep coagulation, is in the range of 1 to 

7s and it is evident that extremely short dispersion times and high intensities of mixing 

are not as crucial as in charge neutralization. 

Figure 3.46 (David and Clark, 1991) compares typical mixing, molecular 
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Figure 3.45. Reaction schematics of alum coagulation (Amirtharajah and Tambo, 
1991) 
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diffusion, and metal ion hydrolysis characteristic times in a hypothetical 100-L reactor 

with a Rushton turbine over a range of energy dissipation conditions described by the 

velocity gradient, G. This figure incorporates both theoretical and experimental results 

of various research workers. In this figure t,uniover is called the average turnover time of 

vessel contents due to impeller pumping and can be given as t^„ver = V/Nd^ The 

tKoimogrov is Called the local Kolmogorov turnover time and can be given as tK<,i„og„ov = 

(v/e)"^. The tcomin is called the local mixing time in isotropic turbulence which falls 

between t^^er ^nd tKoimogorov The diffusive time scale is the time for the metal ions to 

diffuse over distance correspoonding to one-half the Kolmogorov microscale and can be 

given as tj = t\^/{2D). 

V = volume of the suspension (cm^) 

N = impeller speed (rps) 

d = impeller diameter (cm) 

D = diffusivity of metal ion (cm^ s"') 

other variables were defined earlier. 

David and Clark (1991) called t^„^er. ^Kolmogorov. and tco„sin Ae mixing time scales and 

tj the diffusive time scale. From Figure 3.46 it appears that all those time scales are a 

function of mixing intensity and almost all of them are in the order of seconds (except 

Kolmogorov time scale which about 0.1 s) for a wide range of G values, which span the 

typical values in practical water treatment. But the reactive time scales for aluminum 

and ferric hydrolysis reactions are independent of mixing intensity and are in the order 

of microseconds. It should be noted here that the ferric reactions shown here are for 
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Figure 3.46. Comparison of mixing, difftisive, and reactive time scales in 100-dm^ 
Rushton backmix reactor (David and Clark, 1991) 
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very high concentrations. Concentrations used for coagulation are usually much lower 

than these concentrations. The reactive time scales may be in the seconds region in 

those cases. It should also be noted that the ferric reactions shown in this figure are for 

two monomers combining to form a dimer. The time scale for the formation of 

monomer may not be comparable to these time scales. But the main purpose of this 

diagram is to indicate that the reactive time scales for hydrolysis reactions of metal 

coagulants are either much shorter than or comparable to mixing time scales. So 

coagulant hydrolysis reactions in typical mixers would be diffusion limited and very 

high intensity turbulent mixing (or micromixing) would be beneficial for the close 

contact of reactant molecules (here coagulant and water molecules) in order for the 

reaction to proceed. Also in fast, complex, consecutive hydrolysis reactions, it is 

expected that the mixing intensity will influence the final distribution of hydrolysis and 

precipitation products, e.g., the relative distribution of polymeric metal hydrolysis 

products and metal hydroxide (David and Clark, 1991). 

3.6.7. Flow field homogeneity and flocculation 

Figure 3J7 illustrates one image of vortex stretching. In part(a), there are two 

vortices of equal size. Each of these vortices could represent a volume of fluid 

containing a homogenous distribution of particles to be flocculated. Before stretching the 

particles are moving relative to the bulk flow, but are stationary with respect to each 

other. As one vortex undergoes stretching, a localized velocity gradient (i.e., shear 

gradient) is induced in the fluid contained in the vortex. This localized velocity gradient 
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induces particle collisions. The magnitude of the localized velocity gradient will be 

dictated by the diameter at which vortex tube stops stretching and becomes bound by 

viscous forces. The Kolmogorov microscale of turbulence is an approximate indicator of 

this lower size of eddy or vortex diameter. 

The above picture and the entire discussion of energy cascade and dissipation 

have dealt with idealized turbulence. That is, turbulence is homogenous and isotropic 

and a simplified model of this turbulence was first proposed by Kolmogorov. The model 

proposed by Kolmogorov has given the following information regarding homogenous, 

isotropic turbulent flow and flocculation (Hanson, 1989): 

• The largest eddies are strictly a function of reactor geometry, and only 
the largest eddies are a function of reactor geometry. 

• In a homogenous turbulent flow field the smallest eddies will tend 
to be isotropic even if the larger eddies are anisotropic. 

• At the energy input typical of flocculation, the inertial subrange 
probably does not exist. 

• Turbulent eddies only interact effectively with features in the flow of 
nearly equal size, therefore even the smallest turbulent eddies do not 
interact with primary particles. 

• Localized shear fields formed by the turbulent eddies do interact with the 
primary particles, and will cause flocculation. 

• The smaller the Kolmogorov microscale of turbulence the more intense 
the localized velocity gradient. 

• The energy dissipating spectrum is non-linear, and below the microscale 
of turbulence (iiij, the rate of dissipation is decreasing. 

Many research studies based on dynamical system theory, i.e. chaos 
theory, depend on this simple and idealized intuitive picture of turbulence. This 
is encouraging to many researchers in flocculation because it indicates that, at 
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least for intuitive purposes, this simple picture developed here is not to far from 
the mainstream of turbulence research, (pp. 71-72) 

Now the deviations from above idealized model of turbulence will be discussed. 

Turbulence in an actual mixed tank reactor is far from homogenous and isotropic. Many 

researchers such as Cutter (1966), Rao and Brodkey (1972), Van't Reit et al. (1976), 

Okamoto et al. (1981), Clark (1985), Baldyga and Bourne (1984c), Bourne and Dell'ava 

(1987) and Rice and Baud (1990) found an order of magnitude spatial variation of 

energy dissipation in a circular tank with turbine type impeller. This significant variation 

was observed with baffled and unbaffled tanks as well as batch and continuous flow 

operations. Figure 3.31 represents the energy pathways in an actual tank reactor and 

Figure 3.47 shows a Rushton impeller and the flow near the impeller. The Rushton 

impeller is similar to the 2-blade turbine impeller used in this study, and it has been the 

subject of extensive experimental and theoretical works. From this Rushton impeller, 

some insight into the complexities inherent in the flow field of a stirred tank reactor will 

be gained. 

From Figure 3.31, the first thing to notice that only a fraction of the energy per 

unit mass (e) put into the reactor actually generates the turbulence. Some of the energy 

is dissipated directly by the impeller, and some is dissipated directly in the fluid shear. 

Clark (1985) indicated that about 30 percent of the total energy put into the reactor 

could be lost without producing any turbulence. 

From the work of Van't Reit et al. (1976), it is understood that the impeller does 

not generate turbulence directly. It generates non-random pseudo-turbulent flows 
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Figure 3.47. Trailing vortices behind a Rushton-type turbine impeller and resulting 
mean velocity profile (Hanson, 1989) 
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consisting of trailing vortices, impeller discharge flows, and recirculating flows, which 

in turn, generate turbulent flow. Although, these flows generated by the impeller 

exhibited intense fluctuations, they stated, "In the measurements in the impeller 

discharge, the following features have been noted: (a) there is a strong periodicity in the 

velocity near the blade as measured by the stationary probe, which is related to blade 

passage frequency; (b) turbulence intensity varies strongly with vertical distance from 

the agitator plane; and (c) the frequency-based energy spectra are inconsistent with 

isotropic turbulence theories" (p. 407). 

Rao and Brodkey (1972) found in a continuous flow reactor that both the mean 

velocity (U) and the turbulence intensity (u') measured by hot-film anemometer were a 

function of radial and vertical distance. But relative intensity (u'AJ) was almost 

independent of position. This implies the influence of trailing vortices and recirculating 

flow near the impeller (which was termed as pseudo-turbulence by Van't Reit et al., 

1976). Rao and Brodkey (1972) also cited Batchelor's (1960) work which indicates that 

the probability density of the velocity fluctuations at a point for fully turbulent and 

nearly isotropic flow is close to the normal distribution as a consequence of central limit 

theorem. But in their work the authors found a significant deviation of that (probability 

density of velocity fluctuations) from normal distribution which indicated that the flow 

in their reactor was non-isotropic and intermittently turbulent. Their probability density 

distribution was skewed negatively, and the peak was shifted to the right of the mid­

point indicating a non-turbulent region for a larger percent of time. 

Okamoto et al. (1981) indicated that the rate of energy dissipation in the impeller 
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discharge region was 7 to 11 and 6 times greater than the bulk mean value for unbaffled 

and baffled circular vessels respectively. Also there was an overall 50-fold and 40-fold 

variation in value of e from its maximum to minimum depending on positions within 

the vessel for unbaffled and baffled vessels respectively. The baffle slightly improved 

the uniformity of energy distribution. 

Cutter (1966) showed that the ratio of local to average energy distribution rate 

(£/£') varies from about 70 near the tips of the blade to about 3.5 near the wall on the 

centerline of the impeller stream. Outside the impeller stream this ratio may attain a 

minimum value of 0.26 giving a 270-fold variation in the value of e from its maximum 

to minimum. Rao and Brodkey (1972) found similar variations. Van't Reit et al. (1976) 

noted that such a high value of the ratio (e/e') is due to the large influence of pseudo 

turbulence created by blade passage and vortex rotation frequencies. Velocity 

measurements were made by either photographic technique (Cutter, 1966) or by 

stationary hot-film anemometer (Rao and Brodkey, 1972 and Van't Reit et al., 1976) in 

the above cases and both were influenced by the pseudo-turbulence. Van't Reit et al. 

indicated that real turbulence in the impeller discharge stream can only be measured 

reliably by means of a probe rotating with the stirrer. Cutter also estimated the 

following: 

• 20% of the energy put into the reactor is dissipated in the impeller itself, 

• about 50% of the total dissipation takes place in the impeller stream and 

• about 30% of the energy is dissipated in the rest of the tank volume, (p. 44) 
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Figures 3.48 and 3.49 (Placek et al., 1986) show visually the energy generation 

and dissipation profiles for the upper right quadrant of the vessel stirred by a Rushton 

impeller. Figure 3.48 shows the calculated energy profile and Figure 3.49 shows the 

energy dissipation profile for the same region. These profiles were generated by solving 

a semiempirical energy transport differential equation with the help of a numerical 

technique after employing several assumptions and boundary conditions. These figures 

show the only the relative spatial variation, not the absolute values. These figures show 

that high kinetic energy and dissipation regions have almost overlapped. 

By reviewing the works of several researchers Hanson (1989) concluded the 

following: 

• It seems reasonable that mixer geometry may be an 
important variable in flocculator efficiency. 

• It also seems that a mixer geometry which distributes the energy 
uniformly throughout the reactor vessel may have some advantages in 
fiocculation where both growth and breakup are of concern. 

• The areas of low energy in the recirculation region are areas which are 
less likely to be efficient in fiocculation of small particles, and also less 
prone to causing floe breakup. 

• The high energy regions are likely to efficiently flocculate small 
particles, and also breakup the floe which are formed in the less 
energetic regions. 

• Is average e or G, which is based on average 8, a reasonable 
parameter to use in quantifying a turbulent flow field which is obviously 
non-homogenous, (pp. 80-82) 

Based on Cutter's (1966) work, Amirtharajah and O'Melia (1990) illustrates the energy 

dissipation and the corresponding G-values in the three zones relative to an arbitrary 
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average value of power and G for the entire tank equipped Avith a Rushton type impeller 

(Figure 3.50). 

3.6.8. Flocculation experiments with alternative impellers 

The researchers in water treatment flocculation have adopted a relatively simple 

method for determining the effect of mixing on flocculation. They employed different 

impellers either at constant G or constant power for comparison, and measured the 

outcome based on relative turbidity, filtration number or number of primary particles. 

By comparing 30 geometric variations of a turbine impeller, Drobny (1963) 

concluded; "It appears definite that the flocculation process may be made more efficient 

viith respect to power input by simple variations in the paddle designs" (p. 29). He 

flocculated Fullers earth with alum at a pH between 6 and 7. The alum dose was not 

reported, but based on the information presented, the flocculation mode was probably 

sweep floe. Flocculation efficiency was based on relative turbidity and the comparison 

was based on a constant power per unit volume for all of the impellers. 

Argaman and Kaufman (1968 and 1970) and Hanson and Cleasby (1990) studied 

the two impeller designs shown in Figure 3.51, namely a 2-blade turbine impeller and a 

stake and stator (S&S) impeller. These two impellers represent the two extremes in the 

sense of energy input into the reactor. The turbine impeller delivers total energy in the 

centralized location and energy transfer takes place through pseudo turbulence and true 

turbulence (vortex stretching) into the bulk of the tank. The stake and stator on the other 

hand delivers power in a decentralized fashion into the whole tank volume. 



www.manaraa.com

155 

ZONE OF 
MAXIMUM 
TURBULENCE 

Pffii ̂  SOPffi 
V, 0.005V 

6i 7G 

TOTAL VOLUME = V = V, + V2+V3 
AVERAGE POWER DISSIPATION PER 
UNIT VOLUME = 
AVERAGE VELOCITY GRADIENT = G 

IMPELLER 
STREAM ZONE 

Pin2% 5.4P„ 

V2 % 0.095V 

62 2.3G 

BULK ZONE 
P„3^ 0.25P„ 
Vj 0.9 V 

G3 % 0.5G 

Figure 3.50. Partitioned energy dissipation in a stirred tank (Amirtharajah and O'Melia, 
1990) 
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Figure 3.51. The turbine and stake and stator impellers used by Argaman and Kaufman (1968) and Hanson and 
Cleasby (1990); all dimensions are in inches 
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Argaman and Kaufman (1968) flocculated a 25 mg/l kaolinite suspension using 

25 mg/l of alum as Al2(S04)3.14H20 at an unspecified pH. Based on such a high dose, it 

can be assumed that they were utilizing the sweep floe mode. The flocculation 

efficiency was based on the change in turbidity due to flocculation and sedimentation. 

They took two samples for every flocculation experiment; one immediately after the 

flocculation and the other was a supernatant sample taken at the end of 30 minutes 

settling. Before turbidity measurement, both samples were shaken vigorously to convert 

all the particles into primary particles. The percent difference between these two was 

considered the reduction of primary particles. It is very likely that all the floes would 

not be reduced to primary particles simply by shaking, yielding a serious quantitative 

error. However this error did not invalidate the relative performance of the impellers in 

flocculation. They concluded that the performance of the S&S was superior to the 

turbine impeller. Their work was performed at 21° C. They also noted that G alone was 

not adequate for characterizing the flow field. 

Hanson and Cleasby (1990) on the other hand worked in an A/D region at two 

different temperatures (20 and 5° C) with two energy levels (G=60/s and 22/s). They 

employed a direct approach in measuring flocculation efficiency. They measured the 

number of particles viath an Automatic Image Analyzer (AIA) and related the 

flocculation efficiency to the speed of reduction of the total particle number during 

flocculation. From their extensive study they concluded: 

• Stake and stator (S&S) and turbine impellers performed identically at 

both energy levels at 20°C and flocculation efficiency was better at higher 
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energy input. 

• At 5"C the S&S started out at a slower rate of flocculation but 

eventually overtook the turbine. At higher energy level (G = 60/s) there 

was no time lag for turbine impeller, but a 10-min time lag was observed 

before the S&S impeller produced any noticeable change. At the end, this 

impeller produced better result than turbine impeller. At lower energy 

level both impellers showed a significant time lag, and time lag for S&S 

was larger than that of turbine impeller (20 min vs. 10 min). 

• In the breakup study of flocculated sample with both the impellers at 

high intensity (that of rapid mix); they observed that turbine impeller 

generated many more primary particles than the S&S impeller. They 

concluded that the localized shear field produced by the turbine is much 

more intense than the localized shear fields produced by the S&S at the 

same G or same energy input. 

Their study is not immune to flaw. For counting the particles they always obtained the 

samples from the discharge stream of turbine impeller which does not necessarily 

represent the true picture of the bulk of the tank. So the high initial flocculation rate and 

very high number of primary particles produced during breakup may have magnified the 

actual results to some extent. 

Patwardham and Mirajgaonkar (1970) compared 6 impeller geometries, 

flocculating clay using alum at a pH of 7.6. Based on this pH it is probable that the 

work was performed in the sweep floe mode. Nothing was said about the dose and the 
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mode of coagulation. Figure 3.52 shows the basic impeller geometries, experimental 

conditions, and results. All the paddles were submerged to a depth of 10 cm in the 

suspension water and water depth was 11.8 cm as indicated in Figure 3.52. The 

following definitions were given for the terms used in Figure 3.52. 

A = area of the blade of the paddle (cm^) 

Aj = area of cross-section of the flocculation chamber (cm^) 

S = speed of the paddle (rps) 

k = ratio of water speed to the speed of the paddle 

= flocculation number = (I^VL)/(QVAJ 

L = paddle edge length (cm) 

Q = flow of water through the chamber (liter/min) 

W = The rate of water displaced by a blade of a paddle (liter/min) = Jr^Ddr27rrS 

D = depth of paddle blades (cm) 

r = distance of the center of blade from the paddle center line (cm) 

r„ Tj = distance of blade edges from center of the paddle (cm) 

S' was not defined. The calculated water displacements for impellers 1, 2, 3, 4, 5, and 6 

in Figure 3.52 were 22.6, 27.2, 29.1, 31.6, 51.0, and 36.5 liters/minute respectively. 

Dimension of Ar' in the third column of Figure 3.52 should be cm^ instead of 

cm'*. No definition was given about the theoretical 0^, and the paddle edge length (L). 

But from the information provided the paddle edge length can be viewed as wetted 

perimeter created by all the blades of the paddle and Gn, can be considered as the 

average G defined earlier in this study. 



www.manaraa.com

Depth of watar 11.8 ana 
SurCaca Area 127 sq.in 
Crosa Area 157.5 aq.ln. 
Volume 1500 cc. 

Spead 40 r.p.m. 
Stirring tlma 30 mlna 

PAOOU; DETAILS Temp. 24 Oeg. C 
pH 7.6 

S. 
Ho. Paddla 

On4 

AxlOO 

^ P 

nddi* 
•dga 
lenflrtb 

Theo« 
ratted 

S> 

Thaora 
tloal 
l.k 

rhcoca-
tleal 

OH 

rioecu. 
latloa 
Hunber 
'H 

Sattl. 
Ing 
vale-
oity 
cn/nln 

Turbi­
dity 
MSIOMl 

H<m. 

Hldth 
of 

bladai 
Hldth 

opanlw 

ECflel 
anoy 
at 

turbl-
dlt' 
moYi m 

n 1B4S 20 13. 42 

1845 

1845 

39 iS 
26.1 

64 

39.2 
29.9 

84 

1845 50 33 185 

1841 52 34.3 

1815 73.3 
48.5 

234 

54 

7.4 o.ais 69.5 383 .3816 20 

7,JS 0.798 67 379 .4572 17 

9.45 0.764 64 S70 .4826 16 

10.32 0^46 61 .S 1103 .635 10 

12.5 0.686 57.S 1519 

13.3 0.666 51.5 600 

.762 

.635 11 

.25 82 

.6491 85 

.6485 85.5 

1.00 91 

1.082 94 

1.987 90 

Figure 3.52. Geometry of the paddles used by Patwardham and Mirajgaonkar (1970) 
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They also plotted power characteristics for different impellers and showed that 

power characteristics for impellers 1 through 5 were almost the same up to 40 rpm. No 

definition of power characteristics was given; also it was not explained how the 

theoretical Gn, was different for those five impellers with same power characteristics. 

The impellers were rotated at 40 rpm v^dth variable Gn, for the different impellers. 

Settled turbidity was used as the measure of fiocculation efficiency. The effect of 

impeller geometry was considered to be the main reason for the variation of fiocculation 

efficiency. They also concluded that G^ is not adequate for deciding upon the best flow 

pattern to achieve effective fiocculation, and that G„, needed to be supplemented by 

other suitable design criteria. They fiirther stated that the impeller which provided the 

highest displacement of water by the blade (W) and the highest paddle edge length (L) 

for the same G„, seemed to be the most beneficial. 

Bhole and Limaye (1977) worked with five different container shapes of 1 liter 

containers and with five different impeller geometries, to determine the effects of 

container shape and impeller geometry on fiocculation efficiency. The container shapes 

used in their study were circular, hexagonal, pentagonal, square, and triangular in 

horizontal cross-section. The horizontal cross sectional area of all the tanks were 78.5 

cm^. The five impeller geometries used by them are shown in Figure 3.53. The area of 

each paddle was 19.354 cm^. No information about paddle location inside the tank was 

given. The fiocculation experiments were conducted using 25, 50, 75, and 100 mg/1 

Fuller's earth suspension at pH = 7.0 with alum dosages of 1, 5, 10, and 20 mg/1. The 

fiocculation speeds were 20, 40, and 60 rpm for all the impellers. So it is likely that the 
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energy input was different for different impeller geometries. Flocculation efficiency was 

measured by the ratio of final turbidity to the initial turbidity. But no information was 

given about the final turbidity, whether it is at the end of flocculation or after some time 

of settling. 

Working with flat blade impeller (shape A) and the five containers mentioned 

above (using all the Fullers earth concentrations and coagulant dosages), Bhole and 

Limaye (1977) found that pentagonal container gave the best result. Working with 

various combinations of impeller geometry and container shapes, they concluded that 

impeller D performed best with every container shape under all the conditions employed 

(combinations of Fullers earth concentration and coagulant dosages). The best 

flocculation results were obtained when impeller shape D was used with pentagonal 

container. The second best result was obtained with the same container and the impeller 

shape C. 

Ives (1984), working in a 1-L reactor, compared nine impeller geometries as 

shovm in Figure 3.54. A 16.7 mg/1 kaolinite suspension was flocculated with 

Al2(S04)3.16H20 at unspecified pH and dose. Based on the information provided, it is 

likely that the work was performed in the sweep floe mode. He stated that the 

experiments were performed under the same conditions, but did not explicitly mentione 

what this meant. Based on the circumstances it is assumed either constant power input 

or constant G. Two measures of flocculation were used to evaluate those nine impellers: 

settled turbidity and filtration nimiber (F) based on filtration of the flocculated water 

without settling. F can be defined as follows: 
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Figure 3.54. Geometry of the paddles used by Ives (1984) 
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F = (HCp)/(V,C„t) 

where, H = headless, = approach velocity, t = time of operation, €<,= inlet turbidity 

and Cf= outlet turbidity. 

The lower the filtration number, the better the flocculation performance. He also showed 

a significant geometry effect on turbidity removal and filtration number. Although the 

performance order based on turbidity removal did not exactly match with that based on 

filtration number, the results indicated that the performance of the wire mesh was 

among the best three. The size of the mesh opening was not presented. 

Koh and his colleagues (1984, 1987) addressed the non-homogenous nature of 

the turbulent flow field associated with turbine impeller in modelling orthokinetic 

flocculation. They used a fully destabilized suspension for flocculation modelling in a 

compartmentalized reactor which was divided into a number of regions (based on 

variable energy dissipation). Volume averaged shear rate, based on energy dissipation 

values from the literature was used to model the flocculation process. Comparing the 

results for various numbers of compartments, they concluded that there was little 

advantage in considering more than two compartments (impeller region and bulk flow 

region). 

The above authors have also pointed out that the effective mean shear rate for 

flocculation is not the same as the mean value obtained from power dissipation per unit 

mass (e), but is equal to the volume average value obtained from the first moment of 

the shear rate distribution. This quantity is highly independent of the system geometry. 

Experimental results indicated that the flocculation efficiency in a couette flow reactor 
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and in a stirred tank reactor are comparable if the effective mean shear rates are used. 

Casson and Lawler (1990) studied the effect of small scale motions 

(micromixing) on flocculation or interparticle contact. They employed an oscillating grid 

impeller to generate small scale fluid motions directly. The flocculator was an acrylic 

cylinder into which a series of grid sections at even spacings was suspended 

horizontally and oscillated vertically (Figure 3.55). Each grid section was composed of 

an acrylic grid and two stainless steel grids. The acrylic grids had 1.25 inch (3.18 cm) 

squares (center to center) and were constructed of 0.25 inch (0.635 cm) square bars. A 

4x4 mesh (16 grids per square inch) stainless steel grid with 0.125 inch (0.318 cm) 

round bars was placed on both sides of each acrylic grid. No information about reactor 

height and spacing of grid sections was provided. This type of oscillating grid impeller 

provided a well defined turbulent flow field for experimentation by directly generating 

small scale motions. 

They stated that the two mixing conditions they used with this oscillating grid 

reactor had characteristic mixing time of only 12 seconds which is much less than that 

in a full scale flocculator (they mentioned 77 seconds for Davis Water Treatment Plant, 

Austin, Texas). The characteristic mixing time was defined as the time for the volume 

of a water in a given flocculator to be directly displaced by the mixing apparatus (i.e. 

the ratio of the total volume in the reactor to the volume of water per unit time "cut-

through" by the mixing apparatus). The two mixing conditions used in the flocculation 

experiments were a grid oscillation frequency of 0.25 Hz with an amplitude of 

oscillation of 0.75 inch (1.91 cm) and a frequency of 0.75 Hz with an amplitude of 
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Figure 3.55. Schematic of the oscillating grid flocculator used by Casson and Lawler 
(1990) 
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oscillation of 0.25 inch (0.64 cm). The mean velocity of the grid was 1.91 cm/s in both 

of these operating conditions. 

One dimensional time records of fluid velocity in the flocculator were measured 

by Laser Doppler Velocimeter (LDV) in both vertical (direction of the grid motion) and 

Horizontal (perpendicular to the direction of grid motion) planes at several locations in 

the reactor. From these measurements of velocity they obtained a power-spectral-density 

function. A similar power-spectral-density function was also used by Argaman and 

Kaufman (1968). The basic principle of the power-spectral-density analysis can be 

illustrated as follows (Frost, 1977): 

If the signal from a probe measuring, say, the u, (one velocity component) 
turbulence velocity fluctuations is processed directiy through a root-mean-square 
meter, the reading will be proportional to the mean turbulence kinetic energy u^, 
and will include the contributions from the entire frequency range of eddies. 
However, if the signal is first processed through a spectrum analyzer, which is 
an arrangement of filters that permits only a small selected band of frequencies 
A(& to pass, then the root-mean-square meter reading will be proportional to the 
turbulence kinetic energy contained by eddies having frequencies only in this 
small bandwidth. Ideally the value of the energy spectral density function at the 
midpoint of the band would then be given by 

where u^j (A(&) is the square of the root-mean-square reading. ... The energy 
spectrum curve established by plotting the value of u^j (Ad)) versus frequency for 
each frequency band investigated would appear typically as illustrated in Figure 
3.56. The function of frequency, E„((i)), defined by the curve is called in addition 
to the energy spectrum density the one-dimensional energy spectrum function, 
the power spectral density function, or simply the spectral density. It follows that 

Similarly ^re related to E22 ((&) and E33 ((&). (p. 109) 

From their power-spectral-density analysis, Casson and Lawler (1990) found that the 

Ey((6) = u'i (A6)/Ad) 
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two mixing conditions produced similar small scale motions and the difference between 

the two mixing conditions was found to lie in the larger scale motions (i.e. much larger 

than the particle sizes). These two mixing conditions produced similar flocculation rate 

of particles in suspension, indicating that the small eddies with length scale similar to 

the particle sizes in suspension were apparently responsible for their interparticle contact 

or flocculation. This result was confirmed with suspensions of monodispersed particles 

(single size particles), bimodal particles (two particle sizes), and trimodal particles (three 

particle sizes). Latex particles were used for making the suspensions, and were 

destabilized by changing the ionic strength with calcium nitrate along with nitric acid to 

maintain a constant pH of 2.0. 

Arboleda-Valencia (1991) also reported some positive results for this type of 

mixing, tried in several Latin American locations. The concept of small scale turbulent 

motion generation was applied in both batch and continuous flow flocculation. In batch 

flocculation, the grid was operated in both circular rotating and vertical oscillatory 

patterns. His results indicated enhancement of flocculation kinetics due to this type of 

small scale turbulent motion. He worked with highly turbid water e.g., with 160 and 840 

MTU turbidity. The details of the experiments (e.g., dose, pH, and the energy input) are 

missing in their report; probably they worked in the sweep floe mode. The following 

conclusions were drawn from their study: 

1. In continuous channel flow flocculation, the grid sizes and spacings had a profound 

impact on the kinetics as well as on the extent of flocculation. 

2. Flocculation time was an important parameter in grid flocculation. From several 
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experiments, it was found that the flocculation time could be reduced by an order of 

magnitude employing a continuous grid mixing pattern, and that long flocculation time 

had a deleterious effect (breakup of floes) on flocculation. So every grid size and 

combination had a certain optimum flocculation time. 

3. There was an optimum combination of screen size and number in batch flocculation 

for both operating modes (circular rotation and vertical oscillation). 

McConnachie (1991) used three types of impeller in a 1-L square reactor in 

alum-kaolinite flocculation experiments. The geometry of the three impellers is shown in 

Figure 3.57. He measured the velocity and RMS of velocity fluctuations in both 

horizontal and vertical directions by Laser Doppler Anemometry (LDA), at different 

horizontal and vertical positions within the reactor. The mean velocity was calculated by 

taking the arithmetic mean of all the velocity readings (both horizontal and vertical 

components) on a particular horizontal plane. Then the overall mean velocity was 

calculated by taking the arithmetic mean of the five mean velocities determined for five 

horizontal planes (at five vertical locations). The overall mean of the RMS of velocity 

fluctuations was also calculated in a similar fashion. These were done v^dth all the three 

impellers at four different speeds (16, 26, 42, and 60 rpm). From this study he showed 

that both the mean velocity and the overall mean velocity for the two paddle type 

(picket gate and branched) configurations, which effectively agitate the fluid by direct 

contact throughout the volume of the reactor, are independent of the paddle shape and 

directly proportional to paddle speed. The paddle stirrer (which is called turbine impeller 

in the current study) produced only 0.5 times the overall mean velocity of the other two 
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with the same impeller speed. This was observed for all the four speeds employed in 

their study. He attributed this difference to the effective stirrer radius (the distance of 

the outer edge of each stirrer from the axis of its shaft). He also showed that the RMS 

of velocity fluctuations or turbulence intensity was different for all the impellers. He 

stated, ..."the branched one produced higher turbulent intensity than picket gate. This is 

probably due to the more severe vortex shedding from the edges of the thin plates than 

from the circular rods at any particular speed" (p. 745). The paddle mixer produced least 

turbulent intensity. 

His flocculation experiments were probably performed in the sweep floe mode 

(pH = 7.0 and alum dose = 50 mg/1). Kaolin clay suspension used in the flocculation 

experiments was prepared in an unusual way. About 800 ml clay suspension of 6.25 

gm/1 was prepared with a series of vigorous mixing steps. This suspension was allowed 

to settle for 24 hours. Then, about 600 ml were decanted from the top to form the stock 

mixture. Later, 40 ml of stock were added to 950 ml distilled water to make the clay 

suspension. So, it is not possible to tell the clay concentration. The author did not 

provide any turbidity reading of the clay suspension. 

His flocculation results did not show any noticeable geometry effect when 

compared with respect to constant power input per volume; and the power required to 

produce the lowest residual turbidities was within a close range for all the impellers 

tested here. The branched type was seen to be somewhat superior in producing relatively 

low turbidities over a wide range of power inputs. The author concluded that for a 

similar power input, a stirrer that extended throughout the volume of the reactor and had 
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shaip-edged blades was more versatile than the other types. 

Clark et al. (1994) employed four different impeller geometries (rake, foil, 

pitched blade, and the Rushton turbine) in three different tank sizes (1 ft, 2.5 ft and 4 ft 

side dimension with square cross section) to investigate the effect of the four impeller 

geometris and scale on flocculation kinetics. In studies with different reactor size, the 

impeller diameter was increased with the tank size to keep the ratio of impeller diameter 

to tank width (D/T) constant. The results comparing different impellers were not 

conclusive although "there was a mild degradation in performance moving ft-om the rake 

to the foil to the pitched blade to the Rushton impeller" (p. 125). The most highly 

reproducible response uncovered in the study when the tanks were operated at the same 

G was poorer performance as the scale was increased. They concluded,"... smaller 

flocculation systems tended to produce more large floe and fewer smaller floe than 

geometrically similar larger systems. This effect was observed regardless of the type of 

initial mixer, coagulant dose, initial mixing intensity, or flocculation impeller design" (p. 

125). 
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4. MATERIALS, METHODS AND EQUIPMENT 

4.1. Introduction 

The work being reported here is an experimental investigation. The main 

objective is to determine the effect of various mixing variables on flocculation kinetics 

in a presumably turbulent flow field. Experiments were performed at two temperatures, 

23° and 5° C; at two pH levels, 7.8 and 6.0 and several clay concentrations. The 

coagulant and the coagulant dosage were also varied in some cases. The flocculation 

experiments were performed in a bench scale batch reactor similar to the reactor used 

by Argaman and Kaufman (1968, 1970), Hanson (1989) and Hanson and Cleasby 

(1990) inside a walk-in constant temperature room. The temperature of the room was 

controlled and monitored using a personal computer (PC) based data acquisition and 

control system. Kaolinite clay similar to that used by above researchers was used in this 

study as the primary particle system. The suspension water was distilled water v^ath 

added sodium nitrate to yield a 0.005M ionic strength. Alum and ferric nitrate were 

used as coagulants in this work. Five different types of mixing impellers as shown in 

Figure 4.1 were used in this study. The physical and chemical conditions in the 

flocculation reactor were monitored using the aforementioned data acquisition system. 

The follov^dng control parameters were monitored: 

• reactor pH, 

• reactor temperature, 
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• impeller rpm, and thereby, the energy input in the reactor, 

• output from flocculation monitoring instrument,called Photometric Dispersion 

Analyzer (PDA). 

The impeller rpm was used as the operational control parameter and was set to the 

desired value but was not recorded continuously. The other control parameters were 

recorded at 5 second intervals. 

The kinetics were monitored by two different instruments. The first one was the 

Photometric Dispersion Analyzer, model 2000 (PDA 2000) which provided an on-line 

measure of flocculation kinetics. The PDA along with other components of the 

experimental set up is shown in Figure 4.2. The theory behind the PDA 2000 is that the 

ratio of the root mean square voltage of the fluctuating light intensity (Vn^s) to the 

voltage corresponding to the mean transmitted light intensity (VJ is found to increase 

substantially as the particle aggregation occurs during flocculation, and provides a 

sensitive measure of the extent of flocculation. This ratio value was termed as the 

"flocculation index" which was recorded at 5 second interval and was plotted as y-

ordinate in all the figures containing results. The other instrument was the conventional 

Hach ratio turbidimeter that measured the homogenized turbidity and the supernatant 

turbidity after flocculation followed by various periods of sedimentation. The 

supernatant samples were collected at a depth of 14 cm from the reactor bottom for 

turbidity measurement, in most cases after 10, 20, and 30 minutes of settling . The 

turbidity values are shown in the parenthesis in all the figures containing results. The 

initial or homogenized turbidity, initial ratio value and zeta potential following rapid 
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mixing were used as quality control parameters. 

Initial suspension zeta potential was measured on a irregular basis to check the 

clay suspension characteristics. The following two subsections will discuss in detail 

about all the features described above. The first subsection will describe the materials 

preparation and the second will describe the methods and equipment. 

4.2. Materials Preparation 

4.2.1. Clay 

Kaolinite clay was used as the primary particle system. Through a sophisticated 

particle counting technique, Hanson (1989) consistently coxmted a total aroimd 7.1 

million particles/ml of suspension containing 25 mg/1 of kaolin clay, of which about 6.5 

million are primary particles less than 2.5 [im in size. Assuming a spherical geometry 

with 1.8 ^m diameter and a specific gravity (S.G.) of 2.65, one can calculate 3 million 

particles per ml. Hanson (1989) indicated that these clay particles are actually plate-like 

material rather than spheres. For clay dispersion, the best method among those three 

reported by Hanson (1989) was used. That is; "adding the clay to water circulating 

through a centrifugal pump, circulation was continued for at least an hour, and then 

repeated periodically (a total of 3-6 hours of circulation) prior to use". Figure 4J is a 

schematic representation of clay dispersion and mixing system. According to Hanson 

(1989) this system has number of advantages, including: 

• 45 liters of 800 mg/1 suspension can be prepared at a time. This minimizes 



www.manaraa.com

181 

NALSENE 
CUYTANK 
45 UTERS OF 
BOO MGA 
XAOLDUTE 
30.S z 30.5 z 61.0 em 

REOSCUUTION 
NOZZEL 

PUMP INLET 

PUMP SWITCH 

STAINLESS 
STEEL PUMP 

•T" WITH BALL 
VALVE ON THE 
SIDE LEG 

TO POWER 

SAMPLING HOSE 

Figure 4.3. Schematic of the clay dispersion and mixing system 



www.manaraa.com

182 

suspension variability. Errors due to measuring the clay and clay loss in simple 

transfer were reduced in significance because a fairly large amount of solid 

material (36 grams) is added to a large volume (45 liters) of distilled water, 

• the 45 liters of stock suspension provided primary particles for a large number 

of experiments, providing continuity from one set of experimental conditions to 

another, and 

• the circulation system made it easy to get a representative sample of the stock 

suspension. 

But the system has some disadvantages. The disadvantages and the remedial 

measures taken to minimize them are described as follows: 

1. The stock suspension lasted for a fair amount of time (four to six weeks). During this 

time frame, the pH of the stock suspension dropped gradually and particle aggregation 

occurred in the mixing tank. This resulted in successively lower numbers of primary 

particles in a series of measurements taken from a particular suspension. This was 

determined by particle counting with the Automatic Image Analyzer (AIA) and was also 

noticed by increased initial ratio value measured on the PDA instrument at the 

beginning of each experiment. 

This aggregation was minimized by keeping the stock suspension pH near 7.0 by 

adding a small amount of IN NaOH as needed, at regular intervals. 

2. After almost eliminating the particle aggregation by pH adjustment as described 

above, there appeared another problem, the evaporation of moisture from the stock 

suspension. Before every experiment the stock suspension was mixed vigorously with 



www.manaraa.com

183 

the pump for over 30 minutes which made suspension warmer and enhanced the 

evaporation rate of the moisture. This moisture condensed on the lid of the tank, and 

when the lid was opened for obtaining sample or for adding NaOH, some moisture 

dripped out of the lid and was lost. That is why, a gradual increase of turbidity was 

noticed for homogenized sample. For a 25 mg/1 clay suspension, the homogenized 

turbidity reading was found to be around 22 at the earlier period when the stock 

suspension was near 45 liter mark and it was found to be around 26 when the stock 

suspension dropped below 20 liter mark. The mode was found near 24. This relative 

concentration change affected the initial PDA reading too, but did not show any 

noticeable change in zeta potential measurement. 

This disadvantage was countered and minimized by adopting a practice of not 

using the entire volume of the clay suspension. When the volume in the stock tank 

dropped below the 15 liter mark, or when the 25 mg/1 homogenized clay in the reactor 

showed a turbidity reading more than 26, then the suspension was discarded and a new 

suspension was prepared. The zeta potential of the homogenized sample did not show 

any noticeable change and was found around -30 mv in most cases. But, at the later 

period of this research the stock clay suspensions (after a number of stock suspensions 

had been prepared) showed a different flocculation tendency due to some unidentified 

reasons fi*om the previous stock suspensions. The zeta potential reading of 25 mg/1 

homogenized sample was found around - 20 mv and the PDA reading of the 

homogenized sample in the reactor showed a marked increase. To minimize the impact 

of this problem, the stock suspension was discarded when the volume dropped below 25 
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liters or the PDA reading of the homogenized sample in the reactor increased 

significantly. It is also recommended that the results obtained with these stock 

suspensions not be quantitatively compared with the other results, as will be discussed 

in Chapter 6. 

The following method was used to make a suspension of desired concentration in 

the reactor before an experiment. The reactor was filled up to the 14 liter mark with 

distilled water and a 90 ml of IN NaNOj was added to it. The clay recirculation system 

was turned on before that and was run for 30+ minutes to insure complete homogeneity 

in the clay dispersion tank. During this time the PDA 2000 was warmed up and 

calibrated using the distilled water in the reactor. After 30+ minutes of mixing the clay 

dispersion tank, the required quantity of stock clay suspension was obtained from the 

surface near the discharge nozzle end of the recirculating system with a beaker. 

Immediately after that the correct amount was measured into either a 500 ml or 1 L 

graduated cylinder. The circulation was shut down immediately after the measured 

quantity was obtained. This measured quantity of stock clay was then added to the 

reactor and the volume of the liquid in the reactor was brought up to 18 liters. 

4.2.2. Dilution water 

The dilution water used in this study was distilled water added with required 

amount of IN NaNO, to provide 0.005M ionic strength. This ionic strength was chosen 

based on the initial study which showed that this ionic strength facilitates stable and 

reproducible zeta potential measurement and does not induce any measurable 



www.manaraa.com

185 

coagulation by double layer compression. A large nalgene plastic tank was filled up to 

the 400 liter mark from the distilled water supply using a rubber tube. This water was 

allowed to stay at least overnight to arrive at equilibrium with the atmosphere with 

respect to COj transfer before conducting any experiments. The distilled water was 

drawn fi"om the bottom of the tank with a sample hose into an 18 liter carboy and then 

transferred from the carboy into the reactor. For experiments at cold temperature the 

carboys filled with distilled water were placed inside the constant temperature room for 

about 48 hours to bring the water temperature near 5° C. Ninety ml of IN NaN03 was 

added into the reactor. The stock solution of IN NaNO, was kept inside the constant 

temperature room all the time. 

4.2J. Coagulant 

Alum [Al2(S04)3.18H20] or Ferric nitrate [Fe(N03)3.9H20] with molecular 

weights of 666.52 and 404.1 respectively both over 99% pure and in crystal form were 

used as coagulants in this study. All dosages in the results section are expressed as these 

molecules and these molecular weights. Both of these coagulants were obtained from 

Fisher Scientific, Fair Lawn, NJ with 500 gm net weight in plastic containers. The metal 

coagulants were stored as 0.25 molar stock solutions. The stock solution was always 

stored at room temperature and its pH was checked periodically to insure the stability 

and integrity of solution. The pH of alum and iron stock solutions always stayed near 

3.2 and 1.3 respectively. The coagulant dosing solution was prepared fi-esh 24 hours 

before the experiments by diluting the appropriate amount of the stock solution with 
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deionized water in a 200 ml volumetric flask. Three concentrations of coagulant dosing 

solution (5 mg/ml, 10 mg/ml, and 20 mg/ml) were used in this study. The dosing 

solution was also stored at room temperature. No precipitates were observed in the 

dosing solution during this storage period. The required amount of coagulant dosing 

solution was loaded into a syringe equipped with #13 gauge needle and taken inside the 

constant temperature room just prior to injection into the reactor. The needle was about 

4.5 inch long. 

4.2.4. Base 

All pH adjustments were made using reagent grade sodium hydroxide (NaOH) 

diluted volumetrically to O.IN and 0.02N with deionized water. The base used for pH 

adjustment was not standardized in this study. It would be worth mentioning here that 

the distilled water from the building supply was used only to prepare the clay 

suspension; all the other chemicals were prepared with deionized water prepared in the 

laboratory using a Nanopure system in the Analytical Service Laboratory. The input 

water to the system is the building distilled water supply. 

4J. Equipment and Methods 

4.3.1. Batch reactor and associated equipment 

The work presented in this dissertation was carried out in a bench scale batch 

reactor similar to the reactor used by Argaman and Kauftnan (1968, 1970), Hanson 
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(1989) and Hanson and Cleasby (1990). Essential features of the plexiglass reactor used 

in this study are shown in Figure 4.4. The electric mixing motor was mounted on a 

wooden support which was rigidly placed on the top of the reactor. Different impellers 

were attached to the motor via a 3/8 inch diameter steel rod, and a plexiglass coupler. 

The wooden support for the motor held the pH probe and the thermocouple for 

temperature meastirement. The motor was controlled by a variable speed motor 

controller (Series H, G. K. Heller Corp., Floral Park, N.Y.). This motor controller was 

used to control the speed at which the motor was rotating as well as hold the rotational 

speed constant. The reactor had four ports on the four sides, 5.5 inch from the reactor 

bottom. This is the level of the impeller discharge stream inside the reactor. Two of 

these four ports were used to inject coagulant and base simultaneously and one was 

used to withdraw sample from the reactor and pass through the glass tube held by the 

PDA cell. The fourth one was sealed with a teflon septum. Two of the other three ports 

also had teflon septa covers and the chemicals were injected through the septa by 

piercing with the hypodermic needle. There were two ports near the bottom of the 

reactor. One was used to drain the entire contents of the reactor after each experiment 

and the other was used to recycle back the withdrawn sample from the PDA instrument 

during the experiment. 

4.3.2. Photometric Dispersion Analyzer (PDA 2000) and flocculation monitoring 

The flocculation rate was monitored qualitatively by a recently developed 

instrument throughout the entire duration of each experiment. This instrument is called 
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the Photometric Dispersion Analyzer, model 2000 (PDA 2000). This instrument is 

manufactured and distributed by Rank Brothers Ltd., Cambridge, England. The 

instrument is a sensitive on-line, flow-through detector, which gives a rapid indication 

of the state of aggregation of particles in a flowing suspension. The theory of the PDA 

was developed by Gregory (1985) and Gregory and Nelson (1984, 1986) based on 

Lambert-Beer law and assuming Poisson distribution of particle number in a flowing 

suspension. The Lambert-Beer law can be given as follows (Gregory and Nelson, 1986 

and Ching et al., 1994); 

I/I„ = VA^,, = exp (-NCL) 4.1 

where, I = transmitted light intensity; = incident light intensity; N = number 

concentration of particles; C = scattering cross section of the suspended particles; and L 

= the optical path length. In practice the light intensity is converted at the detector to a 

proportional voltage. So mean voltage outputs V and Vo correspond to I and I„ 

respectively. 

In a suspension illuminated by a light beam with cross sectional area A and 

length L, the average number of particles (n) contained in the illiraiinated volume equals 

NAL. As the suspension flows through the cell, the actual number of particles in the 

light beam will show a random variations about the mean value, n, as the sample is 

continually renewed by the flow (Gregory, 1985). This variation of particle number will 

follow a Poisson distribution so that the standard deviation about the mean equals the 
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square root of the mean (Std. dev. = n"^). It has also been shown by Gregory (1985) 

and Gregory and Nelson (1984, 1986) that the variation in the number of particles in the 

illuminated volume of a flowing suspension leads to corresponding fluctuations in 

transmitted light intensity and proportional voltage reading. The simplest measure of a 

fluctuating signal is its rms value, and for developing the theory of the PDA, they 

considered only the fluctuating component of the transmitted light intensity (or its 

corresponding ac voltage) after separating it from the mean (dc) value (Figure 4.5) and 

this can be given by 

V = time averaged transmitted signal = exp (-nC/A) = Voexp(-NCL) 

Even for very turbid suspensions, they mentioned, the quantity n"^C/A will be much less 

than unity in which case, Sinh (n"^C/A) « (n"^C/A) and 

It is convenient to write the above expression in terms of the particle number 

concentration, N, rather than the average number in the illuminated beam, n, and to 

introduce a dimensionless term, R, which is the ratio of Vn^ to the mean value V as: 

= V Sinh (n"^C/A) 4.2 

V™. = V (n"^C/A) 4.3 

R = (V™sAO = (L/A)"^N"^C 4.4 
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When the particles aggregate, the rms or ratio value should change for two reasons: 

(a) the number concentration decreases and 

(b) the scattering cross section increases. 

These have opposing effects on the ratio value, but one has less effect than the other, 

because from Equation 4.4, it can be seen that the ratio value depends on the square 

root of the particle concentration and on the first power of the scattering cross section. 

Thus, the net effect is a substantial increase in the fluctuations and in the measured ratio 

value as flocculation progresses. This has been observed by all the researchers working 

with the PDA. The scattering cross section at a given wavelength is dependent on the 

size and shape of the suspended particles. Gregory and Nelson (1984), from theoretical 

considerations, have shown that the rms value or the ratio value should vary as either 

the sixth root or the square root of the aggregation number, depending on whether 

coalesced spheres (Figure 4.6a) or extended aggregates (Figure 4.6b) are assumed. 

Real aggregates will be intermediate between these two extremes (Figure 4.6c). 

Extended aggregates vwll cause the maximum rms ratio value, but their mass density 

may be minimum. 

Equation 4.4 was developed for monodispersed suspension; for a heterodispersed 

suspension, the expression can be modified to (Gregory and Nelson, 1986): 

R = (L/A)"'(lNiCi')"' 4.5 

where, N; and C; are the number concentration and scattering cross section of particles 
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Figure 4.6. Forms of aggregates composed of four equal spheres, (a) Coalesced 
spheres^ (b) Extended aggregate (e.g. aligned by flow), (c) Randomly 
oriented aggregate (Gregory and Nelson, 1984) 
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of size i, respectively. The above equation demonstrates that the fluctuating signal still 

depends on the square root of particle number concentration and on the first power of 

the scattering cross section. An analysis of the term (ENiCi^) in Equation 4.5 reveals that 

smaller particles have a negligible effect on R, and that, in a coagulating suspension, the 

larger aggregates have a dramatic influence on R (Gregory and Nelson, 1986). Hence, 

the ratio R (or the value of V^^) is a useful indicator of the degree of flocculation. For 

a given suspension, it can be assumed that larger values imply larger floe size. Ching et 

al. (1994) called this ratio value as the "coagulation index" in their study. In the current 

study this was called the "flocculation index" which is the more appropriate term 

because it represents the flocculation phase of the coagulation-flocculation process. 

A "flocculation index" vs. time curve daring a flocculation experiment may 

resemble one of the three curves shown in Figure 4.7. The rising limb of all the curves 

depicts the occxurence of flocculation where primary particles and small flocculi are 

growing into floes. The rate of aggregation far outperforms the breakup rate and 

breakup can be assumed negligible in this region. The earlier portion of the rising limb 

represents the aggregation of primary particles into smaller floes and later portion 

indicates the formation of larger floes from the aggregation of smaller floes or 

aggregation of floes with primary particles. The plateau of the curves A and B indicates 

that flocculation has reached the equilibrium stage where floes have grown to a limiting 

size in sheared suspensions, as a result of a competition between floe growth and 

breakup. The rates of aggregation and breakup are comparable. This has been pointed 

out by other researchers too (Gregory and Nelson, 1984 and Ching et al., 1994). The 
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Figure 4.7. Typical flocculation index versus time curves for three different 
treatments during coagulation-flocculation process 
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falling limb of the curve A indicates the settling of much heavier floe particles during 

the later stage of flocculation resulting in a gradual decrease of the ratio value. This has 

been confirmed experimentally by Ching et al. (1994) and by the author. 

During this research some flocculation performance phenomena were found to be 

predictable based on the relative shape of the flocculation index versus time curves 

illustrated in Figure 4.7; 

1. A rising limb with higher slope always yielded better or comparable turbidity removal 

at the end of 30 minute settling following flocculation. For example, treatment A will 

produce better turbidity removal than B and B will be better than C. 

2. When B and C are compared, it was seen in some cases that treatment C might have 

better turbidity removal at some intermediate periods (10 min and 20 min) of 

sedimentation following flocculation. Because curve C crossed curve B at the later 

period of flocculation, and it is possible that higher number of heavier particles were 

produced in treatment C during later period of flocculation, even though the initial 

flocculation rate was higher for treatment B. So higher initial flocculation rate removes 

more primary particles and very small flees and results in better turbidity removal at the 

end of 30 minute settling. Later stage flocculation occurs predominantly between large 

floes and results in better turbidity removal at early period of sedimentation. 

3. If A and B are compared, it shows that flocculation is always better over the entire 

flocculation period in treatment A than treatment B. So turbidity removal in treatment A 

will be better than in treatment B after any period of sedimentation. 

4. In some experiments, it was also observed that the turbidity readings after various 
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periods of settling were different for two experiments even though they produced similar 

"flocculation index" vs. time curve. This may be due to the effect of floe shape (see 

Figure 4.6 for different floe shapes) on the flocculation index. Even though the particles 

in those two experiments created similar blockage to the light, it is possible that 

particles are more settleable in one experiment than the other. 

The hardware and the operation of the instrument will be briefly discussed in the 

following paragraphs. During the flocculation process, a sample stream (flowing 

suspension in Figure 4.8) is withdrawn at a rate of 15 to 20 ml/min through a glass 

tube of 2 mm internal diameter by a peristaltic pump. The glass tube is held by the cell 

of the PDA which houses two precisely-aligned fiber-optic probes. The optical fibers 

carry the incident and transmitted light as shown in Figure 4.8. The light source is a 

high intensity light-emitting diode and the transmitted light is continuously monitored by 

a sensitive photodiode. The output from the photodiode is converted to a voltage which 

consists of a large de component, corresponding to the average transmitted light 

intensity, together with a small ac component or ripple due to the fluctuations of particle 

number in the flowing suspension or of the transmitted light. The dc component is then 

eliminated by passing the signal though a suitable capacitor and can be seen as output 

on the display dial of the PDA by depressing the 'DC switch. The ac component is then 

amplified by an ac amplifier and sent to an rms to dc converter. This converter converts 

the rms value to equivalent dc value which can also been seen on the display 

dial by depressing the 'RMS' switch. The PDA also calculates automatically the ratio of 

rms and dc values. This ratio can also been seen on the display dial of the PDA by 
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Figure 4.8. Schematic of the flow cell of PDA 
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depressing the 'RATIO' switch. All outputs can be smoothed by depressing the 'Filter' 

switch of the PDA. The display dial shows only the instantaneous value which existed 

when the switch was depressed. Both dc and rms readings can be adjusted by use of 

precision 10-tum gain controls, enabling a wide range of suspension concentrations and 

conditions to be monitored. The sensitivity of the machine can be increased by 

increasing the rms gain or decreasing the dc gain. Throughout the current study the 

PDA instrument was calibrated before each experiment using the distilled water in the 

reactor through a flow through recycle system with the help of a peristaltic pump. The 

rms gain was fixed at 50 and the dc gain was varied around 150 to set a dc voltage 

reading of 10 volt corresponding to the mean transmitted light intensity across the 

distilled water passing through the PDA cell with the help of a peristaltic pump. That 

means all the experiments were done with the same sensitivity of the machine. 

The glass tube held by the PDA cell was connected with two ports of the reactor 

through a combination of tygon tubing and rubber stoppers. The sample was v^dthdrawn 

at a rate of 20 ml/min from the upper port (5.5 inch from the reactor bottom), passed 

through the glass tube in the PDA cell and then recycled back to the reactor through the 

bottom port (1/2 inch from the reactor bottom). The connection of PDA with the reactor 

is shown in Figure 4.2.. 

4.3.3. pH adjustment and monitoring 

The initial pH of the homogenized clay suspension in the reactor was always 

foimd to vary between 5.6 to 5.8. At first, the pH of the clay suspension in the reactor 
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was always brought to the desired level (7.8 and 6.0) by adding base. Then, the required 

amount of coagulant and base was injected through two different ports into the impeller 

discharge stream. Immediately after that the two dosing syringes were removed from the 

ports; then, with another syringe, through one of the ports, a tiny amount of 0.02N 

NaOH was continuously added during the whole rapid mixing period to keep the pH 

near desired level. In most experiments this adjustment was continued until the end of 

flocculation. A typical pH vs. time curve is shown in Figure 4.9. 

The base was added to the reactor using two syringes of 20 ml and 10 ml 

capacities respectively with #13 gauge needle. The base was added through the sample 

port on the side of the reactor simultaneously with the coagulant and was discharged 

into the impeller stream. The coagulant was injected in a similar fashion through another 

port. For a particular coagulant dose, a stoichiometric amount (equivalent to the 

coagulant dosage) of O.IN NaOH was loaded in a 10 ml syringe, another syringe of 10 

ml capacity was also loaded with 0.02N NaOH. From initial experiments, it was 

observed that base requirement during rapid mix at pH 7.8 was always higher than the 

stoichiometric amount required for neutralization of the coagulant. So after injecting the 

required amount of O.IN NaOH simultaneously with the coagulant, some additional 

amount of base was always needed for fine tuning the pH. This fine timing was done 

with more dilute solution (0.02N NaOH). Experiments at pH 7.8 always needed an 

additional 1 to 2 ml of 0.02N NaOH during rapid mix to prevent the downward pH 

drift. This was observed at both temperatures. The experiments at pH 6.0 did not require 

any additional amount of base for fine tuning the pH during rapid mix. 
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Figure 4.9. Typical pH versus time curves during coaguiation-flocculation process for 
two experiments at different pH levels 
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The pH of the system was continuously monitored using a 12 mm diameter pH 

probe, and a Fisher Scientific Accumet #610 pH meter. The pH meter was standardized 

using first a 7 buffer, and then a 4 buffer. It was checked again with the 7 buffer. The 

pH meter was checked at both the beginning and the end of each experiment. The tip of 

the pH probe was placed into the clay suspension through a port through the mounting 

support for the motor. The probe was connected to the pH meter and the output of the 

pH meter was connected to a personal computer outside the constant temperature room. 

This computer recorded pH values every 5 seconds throughout the duration of the 

experiment. In three sets of experiments with alum at pH = 7.8, buffer was added to 

obtain the pH control (43 mg/1 of NaHCOj plus a small amount of NaOH as needed to 

reach pH 7.8, or 43 mg/1 of NaHCOs plus 3 mg/1 of Na2C03 or 50 mg/1 of NaHCOj 

plus 2 mg/1 NajCOj respectively). After adding the required amount of buffer stock 

solution to the homogenized clay suspension in the reactor, the base was added (usually 

less than the amount needed for no buffer case) to the suspension to bring the initial pH 

near 7.8. In these experiments using buffer, the quantity of NaNO, added initially to the 

water was reduced correspondingly to keep the ionic strength at 0.005 M. 

4.3.4. Temperature measurement 

Routine temperature measurements were all performed using a type T 

thermocouple. The thermocouple consisted of a pair of wires (copper/constantine), 

which form a bi-metallic junction. The junction produces a voltage which varies directly 

as the temperature varies. The data acquisition card was equipped with a cold block 
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(junction), and was internally calibrated to convert the voltage produced by 

thermocouple to a temperature reading. The thermocouple was encased in a glass sheath 

to prevent interference with the pH measurements. The glass sheath caused a minor lag 

in the response time of the probe, but it was not long enough to warrant concern (on the 

order of seconds). The temperature was also checked with the manual thermometer 

which gave same reading as that of thermocouple. Typical temperature profiles are 

shown in Figure 4.10. 

4.3.5. Data acquisition and control 

The data acquisition system was used to monitor the flocculation reactor. The 

follovdng process control parameters were monitored; 

• reactor pH, 

• reactor temperature, 

• outputs firom PDA (dc, rms, and ratio). 

The pH meter, the thermocouple for temperature measurement and the output ports of 

the PDA were connected to a terminal panel which was connected to the analog card of 

the ACPC-16 Analog Connection personal computer based data acquisition/control 

system (Strawberry Tree Computers; Sunnyvale, CA) (STC). The data acquisition and 

control card was housed in a z-159 Zenith Desktop Personal Computer System. During 

each experiment the STC collected the data and stored it to a file on a 5.25 inch floppy 

disk. The file was then retrieved in a Quatro Pro spreadsheet and graphs were drawn, 

saved and printed out to provide a permanent record of the flocculation conditions. The 
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4.10. Typical temperature versus time curves during two experiments performed at 
different temperamrre 
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data acquisition system collected data on 5 seconds interval. 

The constant temperature conditions were achieved using a walk-in constant 

temperature room. The temperature of the room was also monitored and controlled using 

the STC based data acquisition and control system. Figure 4.2 illustrates the schematics 

of Experimental Setup, where M is the motor driving the impeller and PC is the z-159 

Zenith Desktop Personal Computer System equipped with data acquisition system. 

4.3.6. Turbidimeter and turbidity measurement 

The turbidity of the initial suspension (homogenized) and samples taken at the 

end of different periods of sedimentation following flocculation was measured with a 

Hach Model 18900 Ratio Turbidimeter, manufactured and distributed by Hach Chemical 

Company, Loveland, CO. Turbidity was used as a quick surrogate check of kaolinite 

primary particle concentration. The turbidity of the settled water after flocculation is a 

common indicator of flocculation efficiency. 

The turbidimeter was calibrated as per the manufacturers recommendations. The 

sample for turbidity measurement was drawn through the reactor sampling port from the 

impeller blade level which was 5.5 inch from the reactor bottom. It was taken with a 60 

ml capacity syringe equipped Avith a #13 gauge needle. The homogenized (initial) 

sample was taken after intensely mixing the suspension (G = 450/s) for over a minute 

prior to coagulant addition. In addition, three more samples were collected at the end of 

10, 20 and 30 minute sedimentation in the reactor with the mixer shut off following 

flocculation. The samples were loaded directly into a sample cuvette and the cuvette 
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was inverted gently several times before measurement. The outside of the cuvette was 

wiped clean with a tissue (Kimwipe) before placing the sample in the instrument. It was 

noted that all samples needed about a minute to produce stable reading. 

4.3.7. Laser Zee Meter and Zeta potential measurement 

A model 102 Lazer Zee Meter, manufactured by Pen-Kem Inc. of Croton-on-

Hudson, NY, was used to measure zeta potential. The electronics in the zeta meter have 

been upgraded to model 104 electronics, but the optics were still original. Zeta potential 

(ZP) was used as a quality control parameter. ZP were measured on the coagulated 

sample immediately follovdng rapid mix for all experiments. Zeta potential of the 

homogenized sample was measured irregularly to check consistency of the stock 

suspension. The measwement techniques detailed in the manufacturers literature were 

closely followed. 

The calibration of the instrument was checked using a standard suspension 

provided by the instrument manufacturer. The instrument performed well measuring the 

standard colloid. The sample to be measured was drawn from the reactor and kept in the 

constant temperature room until before measurement. The measurement was done within 

half an hour after sample collection. The temperature of the cold sample changed 

gradually during measurement, but no temperature correction was applied to the reading, 

because, the correction provided by the manufacturer was negligible for a very large 

temperature change and was less than operator's error. A typical variation of t2 mv was 

observed for several readings of the same sample by a single operator. The variation 
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between operators was even greater. 

4J.8. Control of mixing intensity 

The impeller rpm was used as the operational control parameter. The G for the 

reactor was estimated from G versus rpm curve generated from calculated power based 

on measured torque. The torque was measured by a rotating torque meter (Bex - O -

Meter, Model 38, The Bex Company, San Fransisco, CA) using a photographic 

technique. The torque meter was connected between the motor and the impeller with the 

help of plexiglass coupling. The torque meter had two rotating parts. The top part had 

main torque scale and the bottom part had vernier scale. In standing (no motion) 

condition the two 'O's aligned on the two scales. As the motor drove the impeller, torque 

meter rotated with the impeller and there was a twist between the two parts of the 

torque meter due to drag produced by the fluid on the impeller. But the reading 

produced by the torque meter through the relative displacement of the main and vernier 

scales could not be read by eye. Therefore the reading was obtained by photographing 

the scale with a 35 mm camera using high shutter speed (1000/s) and high speed black 

and white 'Kodak' film. The torque values were read out from the printed photographs 

later on. A series of pictures (at least three for each impeller rpm) were taken at 

different rotating speeds of each impeller, and the torque values were read from the 

printed photographs in oz-inch. The power was calculated from the following equation: 

P = T. 6 4.6 
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P = power in watts, T = torque in N-m, and 6 = angular velocity = 27t(rps) 

P = (N-m) X {In X rps) = (2JC/60) X (rpm) x (torque in N-m) 

= 0.1047(rpm) x (torque in N-m) 

= 0.1047(rpm) x 0.00706(torque in oz-inch) 

= 0.0007391 (rpm) x (torque in oz-inch) 

The rms velocity gradient in the reactor (G) was calculated from the following equation: 

G = [P/(Vn)]"- 4.7 

V = working volume of the liquid = 18 L = 1.8 x 10'^ m' and n = dynamic viscosity in 

N.s/m^ = 0.9608 x 10"^ at 23" C. 

Therefore by putting these values of V and ^ at room temperature (23° C), 

G = [(0.0007391 X rpm x torque in z-inch)/(1.8 x 10'" x 0.9608 x 10'^)]"^ 

= 6.54 [NT]"^ 4.8 

N = rpm of impeller and T = corresponding torque reading in oz-inch. 

The G versus rpm curves were plotted using Equation 4.8. The G versus rpm curves for 

the different impellers are shown in Figures 4.11 and 4.12. During the cold temperature 

experiments, in order to obtain desired mixing intensity, constant rpm was maintained. 

So the energy input was the same at both temperatures due to fully developed 

turbulence, but, the G values were less at cold temperature due to higher viscosity. This 

approach was also adopted by Hanson (1989) and Hanson and Cleasby (1990). Hanson 
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Figure 4.11. G versus rpm curves for different impellers at 23° C 
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Figure 4.12. G versus rpm curves for wire mesh impellers at 23° C 
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(1989) gave the experimental evidence that the e versus rpm was inertially controlled in 

his work (i.e., measured torque was the same at two different temperatures when the 

rpm was kept unchanged) using the same 2-blade impeller used in the current work. 

Hanson and Cleasby (1990) stated: 

It is noted that maintaining a constant rpm as the temperature varies is equivalent 
to maintaining a constant e. This is because the system is inertially controlled, 
and the viscous forces can be neglected. This was verified experimentally, (p. 
67) 

It is assumed in the current work, that the same would be true for all of the impellers 

used in this study. 

4.3.9. Mixing impellers 

Five mixing impellers as shown in Figure 4.1 were used in this study. A brief 

description of each of those impellers will be given in this subsection: 

1. 2-blade impeller: This is a turbine impeller that generates radial flow in the 

reactor similar to that shown in Figure 4.13a. It has two circulating loops of flow at top 

and bottom of the impeller blade. This impeller was used by many researchers in 

flocculation studies, such as, Argaman and Kaufman (1968 and 1970), Hanson (1989), 

and Hanson and Cleasby (1990). Figure 4.1a shows the geometry of this impeller. 

2. A 310 impeller: Figure 4.1b shows the geometry of this impeller. This is 

"fluidfoil" impeller, similar to a pitched blade turbine, that generates the flow in an axial 

pattern similar to that shown in Figure 4.13b. This is designed and manufactured by 

LIGHTNIN, Rochester, NY, a unit of General Signal. The manufacturer claims it to be 
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4.13, Flow patterns for radial and axial flow impellers (McDonough, 1992) 
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much more efficient with respect to flow generation and power consumption for keeping 

particles in suspension, than a pitched blade turbine (Manufacturer's advertising 

literature). The impeller used provided a D/T ratio (diameter of impeller/width of tank) 

of 0.52 which is near the maximum recommended by the supplier of 0.5. This impeller 

is a model of similar fluidfoil impellers used in full scale water treatment plants. 

3. Modifled stake impeller: This impeller geometry was obtained by modifying 

the stake impeller (without the stator) used by Hanson and Cleasby (1990) and Argaman 

and Kaufman (1970 and 1968). The number, width and the spacing of the arms were 

kept unchanged but the length of the arms were made longer to occupy almost the entire 

depth of the liquid. The arms are of stainless steel (3/8 inch wide by 10.5 inch long by 

1/8 inch thick). The free end of the arms were 0.5 inch from the reactor bottom and the 

supporting arm was above the water surface. This impeller is opposite to the other two 

in the sense that it delivers power throughout the liquid volume and produces less 

pumping than the above two impellers for the same power input but requires lower 

speed to achieve the same torque. Figure 4.1c shows the geometry of this impeller. 

4. Wire mesh impeller: This impeller was designed and manufactured by the 

author in the laboratory. The author believes that this impeller produces less pumping 

but generates high level velocity fluctuations throughout the reactor resulting in a small 

scale turbulent motions. No measurements were made of the velocity fluctuations but 

the theory of small scale motions produced by this impeller has been hypothesized 

based on the results of the work by Casson and Lawler (1990) and Arboleda-Valencia 

(1991). Three different mesh openings (8x8 openings, 3x3 openings, and 1x1 opening 
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per square inch) were studied in this study. The wires were thin (1 mm diameter) and 

are believed to produce much less drag than the flat long rectangular bars of the 

modified stake impeller. Figure 4.1d shows the geometry of these impellers. 

5. The 2-blade stack impeller: Figure 4.1 e shows the geometry of this impeller 

and Figure 4.14 illustrates the flow pattern generated by this impeller inside a reactor. It 

has been manufactured by placing three 2-blade impellers with equal spacing on a 

vertical shaft. This impeller is believed to generate flow pattern intermediate between 

turbine types (both 2-bIade and A 310) and the paddle types (modified stake and ware 

mesh) impellers. 

The laminar to turbulent transition for an agitated tank vdth turbine impellers 

occxirs at an impeller Reynold nimiber (R^), pNDV^ from 1 to 10,000, where N is the 

rotational speed in revolutions per time, D is the impeller diameter and n is the dynamic 

viscosity (Tatterson, 1991). Above Rg = 10000, the mixing is fiilly turbulent. Most full 

scale water treatment plants use a flocculation G between 30 to 100/s. In the current 

study, the flocculation G values used were within this range. The impeller based 

Reynold's numbers for the 2-blade, A 310, 3 x 3 mesh, 2-blade stack, and modified 

stake impellers used in this study at lowest slow mixing intensity (G = 30/s at 23° C) 

were 10357, 19549, 17607, 8545, and 16582 respectively indicating that flocculation 

occurs under fully turbulent conditions in most situations. It should be noted that, under 

normal operating conditions, even though the impeller based Reynold's number indicates 

fully turbulent regime in the reactor for turbine impellers, it is probable that a good 

portion of the bulk fluid does flow under transitional regime due to flow field 
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4.14. Flow pattern for vertical stacking radial flow impeller (McDonough, 1992) 
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inhomogeneity indicated by several researchers (Cutter, 1966; Okamoto et al., 1981; and 

Van't Reit et al., 1976). At cold temperature this becomes more certain. 

4.3.10. Anatomy of a batch reactor experiment 

The schematic of the experimental setup was shown earlier in Figure 4.2. The 

following sequence of steps will enable us to visualize the entire picture of how a batch 

reactor experiment was performed in this study: 

1. On the day prior to the experiment, the dosing solution of desired concentration was 

prepared and stored at room temperature. On the day of experiment, the PDA 

instrument, clay mixing pump and turbidimeter were first turned on. The PDA 

instrument and the turbidimeter were warmed up for 30 minutes and for an hour 

respectively before use. The clay mixing was done for 40+ minutes to insure complete 

homogeneity in the tank. 

2. During this time of equipment warm up and clay mixing, the reactor was connected 

to the PDA machine and the peristaltic pump, the syringes were loaded with the 

required amounts of coagulant and base, and pH meter was checked and calibrated 

3. The reactor was then filled up to 12-L mark with distilled water and 90 ml of IN 

NaN03 was added. The peristaltic pump was turned on to circulate this water through 

PDA cell. The 'DC gain switch of the PDA was then adjusted to achieve a voltage gain 

of 10 volt using the clear water in the reactor. The RMS switch was set at 50 at this 

time. This calibration was checked for about 10 minutes. 

4. After the clay suspension was mixed thoroughly, the required amount of stock clay 
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suspension was obtained with a beaker and measured into a graduated cylinder. This 

stock suspension was added into the reactor and the volume of suspension in the reactor 

was then brought up to 18 L. The peristaltic pump was turned off just before adding the 

clay into the reactor. 

5.The wooden support equipped with impeller and electric motor was placed on the 

reactor and both pH and temperature probes were inserted into the holes through the 

support. The motor controller and the pH meter was turned on and the impeller speed 

was set corresponding to mixing G = 450/s in order to achieve a homogeneous clay 

suspension of kaolinite clay in the reactor. 

6. After two minutes of mixing at this high speed, the homogenized sample was drawn 

from the reactor through sampling port by using 60-ml syringe with a needle to be used 

for turbidity and zeta potential measm-ement. The peristaltic pump was turned on again 

to circulate this homogenized sample through the PDA cell. High intensity mixing was 

continued for another two minutes before coagulant injection. During this whole period 

of high intensity mixing, base was added into the reactor through a sampling port with a 

rubber septum to set the pH at the desired level. The data acquisition system was 

instructed immediately after setting the target pH, to start recording data at 5 second 

intervals, directly to a floppy disk. The initial flocculation index value was recorded at 

this time. 

7. Coagulant and base were then injected together through two ports into the reactor and 

the stop watch was turned on. After one or two minutes of rapid mixing at desired 

intensity, the impeller speed was reduced, set at desired slow mixing intensity and a 
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sample was drawn with 60-ml syringe for zeta potential measurement. During the whole 

period of this rapid mixing, the pH was maintained near the target value by the addition 

of 0.02N NaOH. 

8. Flocculation was performed for 20 or 30 minutes. During this period, pH was 

maintained near the desired value by adding 0.02N NaOH. Flocculation index was 

observed visually and recorded manually at 5 minute intervals. 

9. At the end of flocculation, the acquisition system was instructed to stop recording 

data on the floppy disk and the floes were allowed to settle for 30 minute period. 

Samples were collected at a depth of 14 cm from the reactor bottom through the sample 

port at 10 minute intervals and turbidity of these samples was measured and recorded. 

The zeta potential measurement of the rapid mixed sample was also done during this 

settling period. 

10. At the end of settling period, the batch reactor was drained into the drain pipe, was 

disconnected from the PDA and the peristaltic pump, and the reactor was washed 

thoroughly several times with warm and cold waters. The reactor was then placed 

inverted on paper towels to drain all the loose moisture from the reactor wall and 

allowed to dry off before the next experiment. At the end of the day the reactor was 

cleaned with soap and water. Usually two to three experiments were performed in a 

single day. 
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5. EXPERIMENTAL DESIGN 

5.1. General 

This section has been designed to direct or to act as a road map for the next 

chapter which contains the results of the experimental study. Since mixing was the 

prime concern of this study, the mixing variables were isolated from other physico-

chemical variables. The variables were divided into two broad classes: mixing variables 

and physico-chemical variables. Mixing variables include: 

• Impeller geometry 

• Rapid mixing intensity 

• Rapid mixing pattern 

• Coagulation injection pattern 

• Concentration of dosing solution 

• Number of coagulation injection ports 

• Slow mixing intensity 

• Slow mixing pattern 

• Mesh opening size 

• Combination of impellers 

The physico-chemical variables include: 

• Type of coagulant 

• pH 
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• Coagulant dose 

• Temperature 

• Clay concentration 

It should be kept in mind that for evaluating the effect of a particular mixing variable, 

only that variable was varied and all the other mixing variables were kept unchanged. 

All the above mentioned mixing variables were tested using ferric nitrate as the 

coagulant. In addition, a number of experiments were done with alum to observe the 

effect of impeller geometry, rapid mixing intensity and slow mixing pattern. The 

follovvnlng sections describe the experimental plans for evaluating the effect of different 

mixing variables under various sets of physico-chemical conditions. The physico-

chemical conditions for each set of experiments are designated as 'treatment sets' in the 

following sections. 

5.2. Experimental Plans 

5.2.1. Experimental plan to observe the effects of impeller geometry 

Figures 5.1a through e illustrate the experimental plans for evaluating the 

performance of different impeller geometries on flocculation efficiency. Five different 

impellers as shovm earlier in Figure 4.1 were tested for this purpose. In most of the 

flocculation experiments with ferric nitrate, three impellers (A 310, 2-blade and 3x3 

mesh) were used. In two sets of experiments (see Figure 5.1c), four impellers were 

employed to observe their performance, and in two other sets of experiments, only two 
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A 310 

2-Blaele 

3 x 3  mesh 

A 310 

2-Blade 

1 X 1 mesh 

A 310 

2-Blade 

3 x 3  m e s h  

A 310 

2-Blade 

3 x3 mesh 

Temperature s 23 C, pH = 7.8 

Dose s 2 mg/l, slow mix G = 30/s 

Results shown in Figure 6.1 

Temperature = 5 C, pH = 7.6 

Dose = 3 mg/l, slow mix G = 24/s 

Results shown in Figure 6.4 

Temperature = 23 C, pH = 7,8 

Dose = 5 mg/l, slow mix G = 30/s 

Results shown In Figure 6.2 

Temperature = 23 C, pH = 6.0 

Dose = 1 mg/l, slow mix G = 30/s 

Results shown in Figure 6.3 

(a) 

Figure 5.1. Experimental plan for evaluating the effect of impeller geometry on 
flocculation kinetics a) with ferric nitrate as coagulant under varying 
conditions; clay suspension concentration is 25 mg/l and rapid mix G 
values are 450/s at 23° C and 360/s at 5° C 
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A 310 

2-Blaele 

3 x 3  m e s h  

A 310 

2-Blacie 

3 x 3  m e s h  

A 310 

3 x 3  m e s h  

A 310 

3 x3 mesh 

Temperature = 5 C, pH = 7.8 

Dose = 3 mg/l, slow mix G = 72/s 

Results shown in Figure 6.6 

Temperature = 5 C, pH = 7.8 

Dose = 3 mg/i, slow mix G = 48/s 

Results shown in Figure 6.5 

Temperature s 5 C, pH s 7.8 

Dose = 5 mg/I, slow mix G = 24/s 

Results shown in Figure 6.7 

Temperature = 5 C, pH = 6.0 

Dose = 1 mg/l, slow mix G = 48/s 

Results shown in Figure 6.8 

(b) 

Figure 5.1. (continued) b) with ferric nitrate as coagulant under varying 
conditions; clay suspension concentration is 25 mg/l and rapid mix 
G = 360/s 
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2 - blade 

1 X1 mesh 

Modified stal<e 

2 -blade stack 

2 - blade 

1 X 1 mesh 

Modified stake 

2 -blade stack 

1 X 1 mesh 

2 -blade stack 

Dose = 2 mg/l, slow mix G = 30/s 

Temperature = 23 C, pH = 7.8 

Results shown in Figure 6.9 

Dose = 1 mg/l, slow mix G = 60/s 

Temperature = 23 C, pH = 6.0 

Results shown in Figure 6.11 

Dose = 1 mg/l, slow mix G = 30/s 

Temperature = 23 C, pH = 6.0 

Results shown in Figure 6.10 

(c) 

Figure 5.1. (continued) c) with ferric nitrate as coagulant under varying 
conditions; clay suspension concentration is 25 mg/l and rapid mix 
G = 325/s 
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2-Blade 

3 x 3  m e s h  

2-Blade 

3 x 3  m e s h  

2-Blade 

3 x 3  m e s h  

2-Blade 

3 x 3  m e s h  

Temperature = 23 C, pH = 6.0 

Dose = 2.25 mg/l and tapered 
G = 30/s for 20 mins then 20/s 

Clay concentration = 50 mg/l 
Results shown In Figure 6.15 

Temperature = 23 C, pH = 7.8 
Dose=2.25 mg/l, slow mix G=30/s 

and tapered G =:30/20/s 

Clay concentration = 50 mg/l 
Results shown in Figure 6.13 

Temperature = 23 C, pH = 6.0 

Dose = 10 and 20 mg/l 
Slow mix Q = 30/s 
Clay concentration = 50 mg/l 
Results shown In Figure 6.14 

Temperature = 23 C, pH = 7.8 

Dose=1.5 mg/l, slow mix G=30/s 

Clay concentration = 25 mg/l 

Results shown in Figure 6.12 

(d) 

Figure 5.1. (continued) d) with alum as coagulant under varying conditions; rapid 
mix G = 325/s 
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2-Blade 

3 x 3  m e s h  

2-Blade 

3 x 3  m e s h  

2-Blade 

3 x 3  m e s h  

2-Blade 

3 x 3  m e s h  

Alum dose = 20 mg/l 

Temperature = 23 C 

Slow mix G = 30/s 

Clay concentration = 50 mg/l 
Results shown in Figure 6.16 

Alum dose = 4 mg/l 
Temperature = 23 C 
Slow mix G = 30/s 
Clay concentration = 10 mg/l 
Suspension contains buffer 
Results shown in Figure 6.19 

Alum dose = 3 mg/l 
Temperature = 23 C 
Slow mix G = 30/s 
Clay concentration = 25 mg/l 
Suspension contains buffer 
Results shown in Figure 6.18 

Alum dose = 4.5 mg/l 
Temperature = 23 C 

Tapered slow mix G = 30/20/s 
Clay concentration = 50 mg/l 
Suspension contains buffer 
Results shown in Figure 6.17 

(e) 

Figure 5.1. (continued) e) with alum as coagulant under varying conditions; rapid 
mix G = 325/s 
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impellers were used. Figures 5.1a through c show the experimental plans to evaluate 

the effect of impeller geometry on flocculation kinetics with ferric nitrate as the 

coagulant. Figures S.ld and S.le illustrate the experimental plans to evaluate the effect 

of impeller geometry on flocculation kinetics using alum as the coagulant. Only two 

impeller geometries (2-blade and 3x3 mesh) were tested in this case under eight 

different sets of physico-chemical conditions. 

5.2.2. Experimental plan for evaluating the effect of rapid mixing intensity 

Figure 5.2 illustrates the experimental plan for evaluating the effect of rapid 

mixing intensity. Different rapid mixing intensities were used under varying conditions. 

In treatment set 1 (box 1 in Figure 5.2) five rapid mixing intensities ( G = 200, 325, 

450, 575, 700/s) were used. For treatment sets 2 and 3, three rapid mixing intensities 

were used and in treatment set 4, four rapid mixing intensities were used. In three cases 

(sets 1, 2 and 4) ferric nitrate was used as the coagulant and in case of treatment set 3 

alum was used as the coagulant. 

5.2.3. Experimental plan for evaluating the effect of rapid mixing pattern 

Figure 53 illustrates the experimental plan for evaluating the effect of rapid 

mixing pattern. Ferric nitrate was used as the coagulant in all the cases. A constant Gt 

value of 27000 was arbitrarily chosen to vary the mixing pattern. Two patterns were 

tested: low intensity (G = 225/s) with long duration (2 minutes), and high intensity (G = 

450/s) with short duration (1 minute). Three impellers were used in four different sets of 
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Rapid mix G = 200/s 

Rapid mix G - 325/s 

Rapid mix G - 450/s 

Rapid mix G = 575/s 

Rapid mix G = 700/s 

Rapid mix G = 360/s 

Rapid mix G = 460/s 

Rapid mix G = 560/8 

Rapid mix G = 325/s 

Rapid mix G = 450/s 

Rapid mix G = 575/s 

Rapid mix G = 200/8 

Rapid mix G = 325/8 

Rapid mix G = 450/8 

Rapid mix G = 575/8 

Temperature = 23 C, pH = 6.0 

Ferric nitrate dose = 1 mg/l 

Clay concentration = 25 mg/l 

Results shown in Figure 6.23 

Temperature = 23 C, pH s 7.8 

Alum dose = 2.25 mg/l 

Clay concentration = 50 mg/l 

Results shown in Figure 6.22 

Temperature = 5 C, pH = 7.8 

Ferric nitrate dose = 3 mg/l 

Clay concentration = 25 mg/l 

Results shown in Figure 6.21 

Temperature = 23 C, pH = 7.8 

Ferric nitrate dose = 2 mg/l 

Clay concentration = 25 mg/l 

Results shown in Figure 6.20 

Figtire 5.2. Experimental plan for evaluating the effect of rapid mixing intensity on 
flocculation kinetics with metal salts as the coagulant under varying 
conditions. 2-blade impeller was used and slow mix G values were 30/s 
at 23° C and 24/s at 5" C 
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Rapid mix G = 450/s for 1 min 

Rapid mix G = 225/s for 2 mins 

Rapid mix G = 450/s for 1 min 

Rapid mix G = 225/s for 2 mins 

Rapid mix G = 360/s for 1 min 

Rapid mix G = 180/s for 2 mins 

Rapid mix G = 360/s for 1 min 

Rapid mix G = 180/s for 2 mins 

Temperature = 23 C, pH = 6.0 
Ferric nitrate dose = 1 mg/l 
Slow mix G = 30/s 
2-blade impeller 
Results shown in Figure 6.25 

Temperature = 5 C, pH = 7.8 

Ferric nitrate dose = 3 mg/l 
Slow mix G = 24/s 
A 310 and 3x3 mesh impellers 
Results shown in Figure 6.27 

Temperature = 23 G, pH = 7.8 
Feme nitrate dose = 5 mg/l 
Slow mix G = 30/s 

A 310 impeller 
Results shown in Figure 6.24 

Temperature = 5 0, pH = 7.8 
Fenic nitrate dose = 6 mg/l 

Tapered slow mix G = 48/s then 24/s 

A 310 impeller 
Results shown in Figure 6.26 

Figure 5.3. Expenmental plan for evaluating the effect of rapid mixing pattern on 
flocculation kinetics with fenic nitrate as the coagulant under vaiying 
conditions. Clay concentration was 25 mg/l 
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physico-chemical conditions to observe the effect of these two rapid mixing patterns. 

5.2.4. Experimental plan for evaluating the effect of coagulation injection pattern 

Figure 5.4 depicts the experimental plan for observing the effect of coagulation 

injection pattern. Two patterns were used; slow injection (gradually over 10 seconds 

duration) and pulse injection (within a second) with a syringe equipped with #13 gauge 

needle. These patterns were tested with ferric nitrate coagulant and 2-blade impeller at 

two different temperatures. 

5.2.5. Experimental plan for evaluating the effect of dosing solution concentration 

Figure 5.5 shows the experimental plan for evaluating the effect of dosing 

solution concentration. Coagulant dose in the suspension was kept constant, only the 

concentration of the dosing solution was changed. That means, when the dosing solution 

concentration was half the previous concentration, twice the previous volume was 

injected into the reactor to keep the dose constant. Three dosing solution concentrations 

(5 mg/ml, 10 mg/ml, and 20 mg/ml) were used in treatment sets 1 and 2 and two 

concentrations (10 mg/ml and 20 mg/ml) were used in treatment set 3. 

5.2.6. Experimental plan for evaluating the effect of number of coagulant injection 

ports 

Figure 5.6 shows the experimental plan for determining the difference in 

performance between 1-point and 2-point injections of coagulant. In 1-point injection. 
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Slow injection 

Pulse injection 

Slow injection 

Pulse injection 

Temperature = 5 C, pH = 7.6 

Ferric nitrate dose = 3 mg/l 

Clay concentration = 25 mg/l 

Rapid mix G = 360/s 

Slow mix G = 24/s 
Results shown in Figure 6.21 

Temperature 23 C, pH = 7.8 

Ferric nitrate dose = 2 mg/l 

Clay concentration = 25 mg/l 

Rapid mix G = 450/s 

Slow mix G = 30/s 

Results shown In Figure 6.28 

Figure 5.4. Experimental plan for evaluating the effect of coagulation injection 
pattern on flocculation kinetics with ferric nitrate as the coagulant under 
two different conditions. 2-blade impeller was used 
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5 mg/ml 

10 mg/ml 

20 mg/ml 

5 mg/ml 

10 mg/ml 

20 mg/ml 

10 mg/ml 

20 mg/ml 

Temperature = 23 C, pH = 7.8 
Ferric nitrate dose = 2 mg/l 
Rapid mix G = 450/s 
Slow mix G = 30/8 
2-biade impeller 
Results shown in Figure 6.28 

Temperature = 5 C, pH = 7.8 
Ferric nitrate dose = 3 mg/l 
Rapid mix G = 360/s 
Slow mix G = 48/s 
2-blade impeller 
Results shown in Figure 6.30 

Temperature s 23 C, pH = 7.8 
Ferric nitrate dose = 2 mg/l 
Rapid mix G = 450/8 
Slow mix G = 30/s 

3x3 mesh impeller 
Results shown in Figure 6.29 

Figure 5.5. Experimental plan for evaluating the effect of the concentration of dosing 
solution on flocculation kinetics under three different conditions with 
ferric nitrate as the coagulant Clay concentration was 25 mg/l 
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Temperature = 23 C, pH = 7.8 

1 
Fenic nitrate dose = 2 mg/l 

1 Rapid mix G = 450/s 
Slow mix G = 30/s 

2-blade impeller 
Results shown in Figure 6.31 

1-point injection 

2-point injection 

Temperature = 23 C, pH = 7.8 
Ferric nitrate dose = 2 mg/l 

Rapid mix G = 200/s 

Slow mix G = 30/s 

2-blade impeller 
Results shown in Figure 6.31 

1-point injection 

2-point injection 

Figure 5.6. Experimental plan for illustrating the performance difference between 1-
point injection and 2-point injection of coagulant on flocculation 
efficiency with ferric nitrate as the coagulant and at two rapid mixing 
intensities. Clay concentration was 25 mg/l 
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the entire volxraie of coagulant was injected through one port of the reactor by a syringe 

equipped with #13 gauge needle. In 2-point injection, the entire volume was divided 

equally into two syringes and then injected through two ports on opposite walls of the 

reactor. 

5.2.7. Experimental plan for evaluating the effect of slow mixing intensity 

Figure 5.7a illustrates the plan for experiments performed in cold water (5° C) at 

pH = 7.8. At cold temperature three slow mixing intensities (G = 24, 48, and 72/s) were 

tested with three different impellers (A 310, 2-blade and 3x3 mesh). Figure 5.7b 

illustrates the plan for experiments performed at warm temperature (23° C) at pH = 6.0. 

In this case, two intensities (G = 30 and 60/s) were tested with two other impellers 

(1x1 mesh and 2-blade stack). 

5.2.8. Experimental plan for evaluating the effect of slow mixing pattern 

Figures 5.8a and b illustrate the experimental plans for evaluating the effect of 

slow mixing pattern. Figure 5.8a is the plan for the experiments performed with ferric 

nitrate coagulant and Figure 5.8b is the plan for experiments done v^ath alum coagulant. 

Two patterns were used: constant G, where mixing intensity was unchanged throughout 

the slow mixing period, and tapered G, where mixing intensity was lowered during the 

latter period of slow mixing, to reduce particle breakup as the particles grew in size. 

This reduction of slow mixing intensity was made at different time intervals for 

different treatment sets (physico-chemical conditions) as shown in the experimental plan. 
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Slow mix G = 24/s 

Slow mix G = 48/s 

Slow mix G = 72/s 

Slow mix G = 24/s 

Slow mix G = 48/s 

Slow mix G = 72/s 

Slow mix G = 24/s 

Slow mix G = 48/s 

Slow mix G = 72/s 

Temperature = 5 C, pH = 7.8 

Ferric nitrate dose = 3 mg/l 

Rapid mix G = 360/s 

3x3 mesh impeller 
Results shown in Figure 6.33 

Temperature = 5 C, pH = 7.8 
Ferric nitrate dose s 3 mg/l 
Rapid mix G = 360/s 
2-blade impeller 
Results shown in Figure 6.32 

Temperature s 5 C, pH = 7.8 

Fenic nitrate dose s 3 mg/l 

Rapid mix G = 360/8 
A 310 impeller 
Results shown in Figure 6.34 

(a) 

Figure 5.7. a) experimental plan for evaluating the effect slow mixing intensity on 
flocculation kinetics with ferric nitrate as the coagulant tmder varying 
conditions; clay concentration was 25 mg/l 
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Slow mix G = 30/s 

Slow mix G = 60/s 

Slow mix G s 30/8 

Slow mix G = 60/s 

Temperature = 23 C, pH = 6.00 

Ferric nitrate dose = 1 mg/l 
Rapid mix G = 32S/s 

1x1 mesh impeller 

Results shown in Figure 6.35 

Temperature s 23 C, pH = 6.00 

Ferric nitrate dose = 1 mg/l 

Rapid mix G s 32S/s 

2-blade stack impeller 

Results shown in Figure 6.36 

(b) 

Figure 5.7. (continued) b) 
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Slow mix G = 72/s 

Slow mix G = 96/s, 
Tapered to 72/s after 6 mins 
then tapered to 48/s after 
12 minutes 

Slow mix G = 60ys 

Slow mix G = 60/s then 

tapered to 30/s after 

10 minutes 

Slow mix G = 60/s then 

tapered to 30/8 after 
10 minutes 

Slow mix G = 60/s 

Temperature = 23 C, pi-i = 6.00 
Ferric nitrate dose = 1 mg/l 
Rapid mix G = 325/s 
2-blade stacl< impeller 
Results shown in Figure 6.36 

Temperature = 23 C, pli = 6.00 

Ferric nitrate dose = 1 mg/l 
Rapid mix G = 325/s 
1x1 mesh impeller 
Results shown in Figure 6.35 

Temperature = 5 C, pl-l = 7.8 
Ferric nitrate dose = 3 mg/l 
Rapid mix G = 360/s 

A 310 impeller 
Results shown in Figure 6.34 

(a) 

Figure 5.8. Experimental plan for evaluating the effect of slow mixing pattern on 
flocculating kaolin suspension with a) ferric nitrate as the coagulant under 
varying conditions; clay concentration was 25 mg/l 
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Slow mix G = 30/s 

Slow mix G = 30/s for 15 mins 

then tapered to 20/s 

Slow mix G = 30/s 

Slow mix G = 30/s for 15 mins 

then tapered to 20/s 

Temperature = 23 C, pH = 7.8 

Alum dose = 2.25 mg/l 

Rapid mix G = 325/s 

2-blade and 3x3 mesh impellers 

Clay concentration = 50 mg/l 

Results shown in Figure 6.13 

Temperature = 23 C, pH = 6.0 

Alum dose = 2.25 mg/l 

Rapid mix G = 325/s 

2-blade impeller 

Clay concentration = 50 mg/l 

Results shown in Figure 6.15 

Figure 5.8. 

(b) 

(continued) b) alum as the coagulant under two different conditions 
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5.2.9. Experimental plan for evaluating the effect of mesh size of the wire mesh 

impeller 

Figure 5.9 illustrates the experimental plan for evaluating the effect of mesh 

size of the wire mesh impeller. Three mesh sizes, 1x1 mesh, 3x3 mesh, and 8x8 mesh 

corresponding to one, nine and sixty four square openings per square inch respectively, 

were used in treatment set 1. In treatment set 2, two mesh sizes, 1x1 and 3x3 mesh, 

were used. 

5.2.10. Experimental plan for evaluating the effect of impeller combination 

Figure 5.10 shows the experimental plan to determine the performance of 

impeller combination. Two impellers, A 310 and 3x3 mesh, were used for this purpose. 

Keeping all the other physico-chemical conditions constant, only the pattern of impeller 

use was varied in different phases of mixing (rapid and slow) as shown in the 

experimental plan. In two experiments, rapid mixing was performed with one impeller 

and slow mixing was performed with another one. The results of these experiments 

were compared with those for experiments performed with the same impeller 

throughout. 
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1x1 mesh 

3x3 mesh 

8x8 mesh 

1x1 mesh 

3x3 mesh 

Temperature 23 C, pH = 7.8 

Ferric nitrate dose = 5 mg/l 

Clay concentration =10 mg/l 

Rapid mix G = 450/s 

Slow mix G = 30/s 

Results shown in Figure 6.38 

Temperature = 23 C, pH = 6.00 

Ferric nitrate dose = 1 mg/1 

Clay concentration = 25 mg/i 

Rapid mix G = 450/8 

Slow mix G = 30/s 

Results shown in Figure 6.37 

Figure 5.9. Experimental plan for determining the effect of mesh opening size of the 
wire mesh impeller on flocculation efficiency under two different 
conditions with ferric nitrate as the coagulant 
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Temperature = 5 C, pH = 7.8 

Ferric nitrate dose = 3 mg/l 

Clay concentration = 25 mg/l 

Rapid mix G = 360/s 

Slow mix G = 48/s 

Results shown in Figure 6.39 

Temperature = 5 C, pH = 7.8 

Ferric nitrate dose = 3 mg/l 

Clay concentration = 25 mg/l 

Rapid mix G = 360/s 

Slow mix G = 48/s 

Results shown in Figure 6.39 

Temperature = 5 C, pH = 7.8 

Ferric nitrate dose = 3 mg/l 

Clay concentration = 25 mg/l 

Rapid mix G = 360/s 

Slow mix G = 48/s 

Results shown in Figure 6.39 

Temperature = 5 C, pH = 7.8 

Ferric nitrate dose = 3 mg/l 

Clay concentration = 25 mg/l 

Rapid mix G = 360/s 

Slow mix G = 48/s 

Results shown in Figure 6.39 

Rapid and slow mix with 

3x3 mesh impeller 

Rapid mix with A 310 impeller 

and slow mix with 3x3 mesh impeller 

Rapid mix with 3x3 nrwsh impeller 

and slow mix with A 310 impeller 

Rapid and slow mix with 

A 310 impeller 

Figure 5.10. Experimental plan for evaluating the performance of two different 
impellers in both rapid and slow mixing stages 
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6. RESULTS, DISCUSSION AND CONCLUSIONS 

6.1. Results 

6.1.1. General 

This chapter presents the results of the experimental investigations of this 

research. Experimental investigations were conducted to evaluate the impact of different 

mixing variables according to the plans outlined in the previous chapter. The results of 

the experiments are presented in graphical format where "flocculation index" (or PDA 

reading) is plotted against time (minutes). It should be noted that the ordinate scales are 

not the same in all figures. The scale was allowed to vary to present the data with the 

most sensitivity. A curve generated by an experiment corresponding to a particular 

mixing variable is marked with an arrow. The mixing variable is written at the tail of 

the arrow in all figures. The numbers in parenthesis with the arrow, represent the 

homogenized turbidity and the 10 minute, 20 minute and 30 minute settled turbidity 

respectively, following flocculation. In some experiments with alum, 40 minute turbidity 

was also measured and presented within the parenthesis. 

Time "0" on the x axis represents the start of flocculation and acts as the 

demarkation line between rapid and slow mixing processes. Negative time indicates the 

rapid mixing duration. The rising limb of the curve corresponds to the growth of particle 

aggregates or floes. The plateau and the falling limb correspond to equilibrium of 

growth and settling of heavier floe particles respectively. A steeper slope of the rising 
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limb means better kinetics in a particular treatment set (physico-chemical conditions). 

All the physico-chemical variables are mentioned at the top left comer of the figure. 

Figure 6.1 is an example of a typical figure illustrating the results. 

Some of the experiments were duplicated and some were triplicated. Due to 

change in clay characteristics and the random nature of flow through the PDA cell, it 

was not always possible to generate the exact quantitative "flocculation index" and 

turbidity readings. But qualitatively the results remained unchanged in all the 

replications. For example, if an impeller performed better once, it always performed 

better than the others in all the replicate experiments, even though it was not always 

possible to trace the exact same curve. The spread between replicates could be 

minimized by performing the experiments back to back with the same stock clay 

suspension. It was also found that two different clay suspensions with the same initial 

"flocculation index" and turbidity produced minimum departure between replicates. To 

minimize the replication error, the experiments performed to evaluate the effect of a 

particular mixing variable were conducted with the same stock clay suspension and in 

close proximity of time (usually in the same day or within two to three days). 

The experiments to generate Figures 6.1, 6.2, 6.3, 6.9, 6.10, 6.11, 6.23, 6.24, 

6.25, 6.35, 6.36, 6.37, 6.38 were performed at the latest part of this research. The stock 

clay suspension used in these experiments showed a significant variation in flocculation 

tendency as was evidenced by increased initial "flocculation index" value and less 

negative zeta potential (-20 mv as opposed to -30 mv in other figures not listed above) 

of the homogenized sample. The source of this erratic behavior was unidentified, but the 
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ATURE-SSC 

SNCENTRATIQN - 89 mg/l 

NITRATE DOSE - 2 mg/l 
SOLUTION- 10 mgAiH 
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-2 

/ (83, BJ, e.7,6.1) 

A 310 IMPELLER 

(23,7.4,4,8,4.7) 
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TIME(MINUTE) 

-I r 
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Figure 6.1. Effect of impeller geometry on flocculation kinetics at pH = 7.8 and 
temperature = 23° C with ferric nitrate as the coagulant. The G value of 
450/s corresponds to 493, 248, and 112 rpm for A 310, 2-blade and the 
3x3 mesh impellers respectively. The G value of 30/s corresponds to 63, 
40, and 17 rpm for A 310, 2-blade, and 3x3 mesh impellers respectively. 
Numbers in parenthesis represent the homogenized turbidity and 10, 20, 
and 30 minute settled turbidity respectively following flocculation 
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error was minimized by more intense and longer mixing in the reactor prior to the start 

of the experiment. The stock clay suspension was also mixed for longer period than 

usual and was discarded when it dropped below the 25-L mark in the stock clay tank. 

The problem was consistent throughout the later stage of this research. But the curves in 

any one figure or between two figures, from these listed above, can be compared both 

qualitatively and quantitatively without any confusion. Any curve from these figures 

should not be compared quantitatively (flocculation index and turbidity values) with the 

curves in figures that are not mentioned in the above list. But qualitatively, (to observe 

the effect of a certain variable) any figure from this listed group can be compared with 

any figure that is not present in this list. 

Moreover, the main concern was the mixing variables, and not the other physico-

chemical issues (e.g. effect of temperature change, coagulation chemistry etc.). Different 

mixing variables were tested with different combinations of physico-chemical variables. 

Almost all the experiments were done with low coagulant dose, presumably under the 

adsorption/destabilization coagulation condition with the zeta potential of rapid mixed 

sample near -10 mv. The follov^ang subsections will describe the results of the 

experimental study. 

6.1.2. Effect of impeller geometry 

One of the prime objectives of this research was to identify the optimum 

impeller geometry for the coagulation-flocculation process, so the maximum number of 

experiments were performed to observe the effect of geometry under a large number of 
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physico-chemical conditions. For this reason, five different impellers were employed 

under varying conditions. One impeller was commercially available (A 310), one was 

used by other researchers (2-blade) as mentioned earlier, and the other three (ware mesh, 

modified stake and 2-blade stack) were designed and fabricated in the laboratory as a 

part of this study. The G versus rpm curves for all the impellers were developed by a 

photographic technique (mentioned earlier) in the laboratory. 

The effect of geometry is shown in Figures 6.1 through 6.19. Figures 6.1 

through 6.11 represent the results of experiments performed with ferric nitrate 

coagulant and the rest were performed with alum coagulant. Figures 6.4 through 6.8 

illustrate the results of the cold temperature (5° C) experiments. The rest contain warm 

temperature (23° C) experiments. 

Figure 6.1 illustrates the performance of three different impellers at warm 

temperature (23° C) and at pH = 7.8. From this figure, it is evident that geometry has 

significant impact on flocculation kinetics. This is demonstrated by both the sharp 

increase of flocculation index and marked decrease in turbidity reading at a particular 

point of measurement. Keeping all the other variables constant, only by changing the 

geometry of impeller, one can change the kinetics of flocculation to a significant extent. 

From this figiu-e, it is obvious that the wire mesh (3x3 mesh) impeller was the best 

among the three impellers tested and the A 310 impeller performed worst. The 

difference in performance among the impellers was quite significant. 

Figure 6.2 illustrates the performance difference among the three impellers at a 

different coagulant dose. Here the dose was 2.5 times the dose shown in the previous 
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Figure 6.2. Effect of impeller geometry on flocculation kinetics at pH = 7.8 and 
temperature = 23® C with ferric nitrate as the coagulant.The G value of 
450/s corresponds to 493, 248, and 112 rpm for A 310, 2-blade and the 
1x1 mesh impellers respectively. The G value of 30/s corresponds to 63, 
40, and 20 rpm for A 310, 2-blade, and 1x1 mesh impellers respectively. 
Numbers in parenthesis represent the homogenized turbidity and 10, 20, 
and 30 minute settled turbidity respectively following flocculation 
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figure and the mesh size was larger (1x1) than the previous mesh size (3x3). It can be 

seen that the kinetics were much faster and turbidity removal was better with the higher 

dose (compared with prior Figure 6.1). When the performance of the impellers is 

critically observed in the Figures 6.1 and 6.2, it becomes clear that the impeller 

geometry is very important in flocculation kinetics. If the performance of 3x3 mesh 

impeller in Figure 6.1 is compared wdth the other two impellers (2-blade and A 310) in 

Figure 6.2, it can be seen that 3x3 mesh impeller in Figure 6.1 removed more turbidity 

at all periods of sedimentation than the other two impellers, in spite of the lower dosage 

used in Figure 6.1. 

Figure 63 shows the performance of the three impellers mentioned in Figure 

6.1 at different pH and ferric nitrate dose. All the other conditions of Figure 6.1 were 

kept unchanged here. A dose of 1 mg/1 ferric nitrate at pH = 6.0 gave a zeta potential 

reading near -5 mv which is optimum condition for A/D coagulation. But the inherent 

chemical characteristics of ferric nitrate produced considerably worse flocculation 

kinetics at this pH than at pH = 7.8. 

From the results shown in Figures 6.1, 6.2 and 6.3 it appears that the better 

impeller performs better in each of these three conditions. Although the spread between 

the curves generated by 3x3 mesh and 2-blade impellers in Figure 6.3 is not substantial, 

the turbidity readings generated by those two impellers were substantially different. The 

3x3 mesh impeller achieved much better results than the 2-blade impeller in terms of 

turbidity removal. By comparing the performance of these two impellers here, it can be 

stated that even though the floes produced by the two impellers created similar blockage 
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Figure 6.3. Effect of impeller geometry on flocculation kinetics at pH = 6.0 and 
temperature = 23° C with ferric nitrate as the coagulant.The G value of 
450/s corresponds to 493, 248, and 112 rpm for A 310, 2-blade and the 
3x3 mesh impellers respectively. The G value of 30/s corresponds to 63, 
40, and 17 rpm for A 310, 2-blade, and 3x3 mesh impellers respectively. 
Numbers in parenthesis represent the homogenized turbidity and 10, 20, 
and 30 minute settled turbidity respectively following flocculation 
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to the light in the PDA instrament, the floes produced by the 3x3 mesh impeller had a 

higher settling velocity than those produced by the 2-blade impeller. So the 3x3 mesh 

impeller produced larger and heavier floes than the other two impellers. 

Figure 6.4 illustrates the performance difference of the three impellers 

mentioned in Figure 6.1 at cold temperature (S'C). Here, the dose was increased to 3 

mg/1 to achieve zeta potential reading near -10 mv and to achieve measurable kinetics 

with a slow mix G = 24/s. With ferric nitrate dose of 2 mg/1, the zeta potential was 

more negative (around -16 mv) and kinetics were much worse with a slow mix G of 

24/s. The experimental conditions for Figures 6.5 and 6.6 were identical to those for 

Figure 6.4, except for the slow mixing G. As opposed to slow mix G = 24/s in Figure 

6.4, the G values are 48 and 72/s in Figures 6.5 and 6.6, respectively. From these three 

figures it is evident that the impeller geometry has a pronounced effect on flocculation 

kinetics at cold temperature also, and the performance difference is even more dramatic 

at cold temperature as shown by the wider spread between "flocculation index" versus 

time curves and higher difference of turbidity readings produced by the three impellers. 

The performance ranking also remains unchanged here. The 3x3 mesh impeller 

performed best and the A 310 impeller performed worst. 

The experimental conditions for Figure 6.7 were similar to those for Figure 6.4, 

except the ferric nitrate dose. In experiments to generate Figure 6.7 the coagulant dose 

was two times (6 mg/1) of that (3 mg/1) used in experiments to generate Figure 6.4. 

This resulted in a zeta potential of -3 mv at the 6 mg/1 dosage compared with -13 mv at 

3 mg/1. With this higher dose of coagulant the performance difference between two 
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Figure 6.4. Effect of impeller geometry on flocculation kinetics at pH = 7.8 and 
temperature = 5° C with fenic nitrate as the coagulant The G value of 
360/s corresponds to 493, 248, and 112 rpm for A 310, 2-blade and the 
3x3 mesh impellers respectively. The G value of 24/s corresponds to 63, 
40, and 17 rpm for A 310, 2-blade, and 3x3 mesh impellers respectively. 
Numbers in parenthesis represent the homogenized nirbidity and 10, 20, 
and 30 minute settled turbidity respectively following flocculation 
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Figure 6.5. Effect of impeller geometry on flocculation kinetics at pH = 7.8 and 
temperature = 5° C with ferric nitrate as the coagulant The G value of 
360/s corresponds to 493, 248, and 112 rpm for A 310, 2-blade and the 
3x3 mesh impellers respectively. The G value of 48/s corresponds to 93, 
64, and 27 rpm for A 310, 2-blade, and 3x3 mesh impellers respectively. 
Numbers in parenthesis represent the homogenized turbidity and 10, 20, 
and 30 minute settled turbidity respectively following flocculation 
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Figure 6.6. Effect of impeller geometry on flocculation kinetics at pH = 7.8 and 
temperature = 5° C with ferric nitrate as the coagulant The G value of 
360/s corresponds to 493, 248, and 112 rpm for A 310, 2-biade and the 
3x3 mesh impellers respectively. The G value of 72/s corresponds to 124, 
84, and 36 rpm for A 310, 2-blade, and 3x3 mesh impellers respectively. 
Numbers in parenthesis represent the homogenized turbidity and 10, 20, 
and 30 minute settled turbidity respectively following flocculation 
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Figure 6.7. Effect of impeller geometry on flocculation kinetics at pH = 7.8 and 
temperature = 5° C with ferric nitrate as the coagulant The G value of 
360/s corresponds to 493, 248, and 112 rpm for A 310, 2-blade and the 
3x3 mesh impellers respectively. The G value of 24/s corresponds to 63, 
40, and 17 rpm for A 310, 2-blade, and 3x3 mesh impellers respectively. 
Numbers in parenthesis represent the homogenized turbidity and 10, 20, 
and 30 minute setded turbidity respectively following flocculation 
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turbine impellers (2-blade and A 310) decreased to a significant degree in terms of 

turbidity removal and the flocculation index readings almost overlapped. From this 

figure it is once again seen that even though the PDA readings produced by the two 

impellers were almost identical, their turbidity readings showed noticeable differences. 

The 2-blade impeller produced better settling floes resulting in better turbidity removal 

than the A 310 impeller. The 3x3 mesh impeller performed much better than the other 

two impellers with this higher dosage at cold temperature. 

When Figures 6.4 and 6.7 are compared, it can be visualized again that the 

higher dose of ferric coagulants increased the flocculation kinetics and the floe 

settleability at this particular pH value. If these two figures are critically compared then 

the importance of impeller geometry can also be revealed. In terms of turbidity removal, 

the 3x3 mesh impeller in Figure 6.4 with less coagulant dose performed better than or 

equal to the other two impellers in Figure 6.7 with high coagulant dose. 

Figure 6.8 illustrates the impact of impeller geometry on flocculation kinetics. 

Two impellers were compared: 3x3 mesh and A 310. This figure also indicates better 

performance of the 3x3 mesh impeller (curve 1) than the A 310 turbine impeller (curve 

3). But due to inherent chemical characteristics of ferric coagulant, this better 

performance by the 3x3 mesh impeller was still not enough to produce similar results 

produced by the other two impellers at pH = 7.8 as shown in Figure 6.5. The kinetics 

of flocculation with ferric coagulant are much worse at pH = 6.0 than at pH = 7.8. 

When the dose was increased 10 times, the particles were restabilized and the kinetics 

became even worse (compare curves 1 and 2 in Figure 6.8). It would not be advisable 
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Figure 6.8. Effect of impeller geometry on flocculation kinetics at pH = 6.0 and 
temperature = 5° C with ferric nitrate as the coagulant. The G value of 
360^ corresponds to 493 and 112 rpm for A 310 and the 3x3 mesh 
impellers respectively. The G value of 48/s corresponds to 93 and 27 rpm 
for A 310 and 3x3 mesh impellers respectively. Numbers in parenthesis 
represent the homogenized turbidity and 10, 20, and 30 minute settled 
turbidity respectively following flocculation 
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to flocculate the clay particles at low temperature and at low pH with ferric nitrate 

coagulant under the prevailing water chemistry of these experiments, because of the 

problem with restabilization. 

So far, two turbine type impellers were compared with one paddle type impeller. 

Figure 6.9 illustrates the performance of one turbine type impeller (2-blade) with three 

paddle type impellers. The 2-blade stack impeller was considered a paddle type 

impeller, because of the decentralized nature of its power input to the flocculation tank. 

Figure 6.10 also illustrates the performance difference of these four impellers at a 

different pH (6.0) and coagulant dose. From these two figures, it is certain that all the 

paddle type impellers that deliver power into the reactor in a decentralized fashion, 

performed equally, and far better than the 2-blade turbine impeller under both sets of 

physico-chemical conditions. Some spread among the flocculation index versus time 

curves generated by different paddle impellers was observed at pH = 7.8, but they all 

produced almost identical turbidity readings. 

When the 1x1 mesh impeller was compared with the 2-blade stack impeller at a 

higher slow mixing intensity (G = 60/s) as shown in Figure 6.11, it produced almost the 

same turbidity readings as those produced by the other impeller, even though their PDA 

readings were different. Even though the particles generated by the 1x1 mesh impeller 

gave slightly lower flocculation index values, their settling velocity was similar to those 

generated by the other impeller. 

Figures 6.12 through 6.19 illustrate the effect of impeller geometry (two 

impellers: 3x3 mesh and 2-blade were used) on the kinetics of alum flocculation. All the 
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Figure 6.9. Effect of impeller geometry on flocculation kinetics at pH = 7.8 and 
temperature = 23° C with ferric nitrate as the coagulant. The rapid mix G 
value of 325/s corresponds to 200, 93, 105, and 180 rpm for 2-blade, 1x1 
mesh, modified stake, and 2-blade stack impellers respectively. The slow 
mix G value of 30/s corresponds to 40, 20, 20, and 33 rpm for 2-blade, 
1x1 mesh, modified stake, and 2-blade stack impellers respectively. 
Numbers in parenthesis represent the homogenized turbidity and 10, 20, 
and 30 minute setfled turbidity respectively following flocculation 
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Figure 6.10. Effect of impeller geometry on flocculation kinetics at pH = 6.0 and 
temperature = 23° C with ferric nitrate as the coagulant. The rapid mix G 
value of 325/s corresponds to 200, 93, 105, and 180 rpm for 2-blade, 1x1 
mesh, modified stake, and 2-blade stack impellers respectively. The slow 
mix G value of 30/s corresponds to 40, 20, 20, and 33 rpm for 2-blade, 
1x1 mesh, modified stake, and 2-blade stack impellers respectively. 
Numbers in parenthesis represent the homogenized turbidity and 10, 20, 
and 30 minute settled turbidity respectively following flocculation 
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Figure 6.11. Effect of impeller geometry on flocculation kinetics at pH = 6.0 and 
temperature = 23° C with ferric nitrate as the coagulant The rapid mix G 
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Numbers in parenthesis represent the homogenized turbidity and 10, 20, 
and 30 minute settled turbidity respectively following flocculation 
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experiments to generate the above mentioned figures, were performed at warm 

temperature (23° C). Also a rapid mix G = 325/s was used in all those experiments. In 

general, it will be evident in most of these figures that alum was not as effective in 

turbidity reduction as ferric nitrate under comparable experimental conditions. Figure 

6.12 shows the performance difference between two impellers flocculating a 25 mg/1 

clay suspension with 1.5 mg/1 alum dose at a pH = 7.8. These conditions produced a 

zeta potential around -10 mv v^ath this clay suspension. So the mechanism of 

flocculation was adsorption/destabilization. This figure also indicates the importance of 

impeller geometry. 

The experimental conditions for Figure 6.13 were similar to those for Figure 

6.12 except for the clay concentration, coagulant dose and slow mixing pattern. An alum 

dose of 2.25 mg/1 was used to achieve a zeta potential around -10 mv with 50 mg/1 clay 

suspension in these experiments. Two slow mixing patterns were used in this figure 

(constant G of 30/s for curves 2 and 4, and tapered G for curves 1 and 3 of 30/s for 15 

minutes, followed by 20/s up to the end of flocculation). Significant impeller geometry 

effect was noticed in both of these slow mixing conditions. The 3x3 mesh impeller 

performed far better than the 2-blade impeller. 

Figure 6.14 shows the impact of impeller geometry on alum flocculation at pH = 

6.0 with several alum dosages. For the 2-blade impeller when the alum dose was 

increased from 2.25 mg/1 (curve 3) to 10 mg/1 (curve 5), the particles became 

restabilized wdth positive zeta potential, producing much worse kinetics. With fixrther 

increase of dose firom 10 mg/1 to 20 mg/1 (curve 2) the flocculation index values were 
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Figure 6.12. Effect of impeller geometry on flocculation kinetics at pH = 7.8 and 
temperature = 23° C with ium as the coagulant Clay concentration is 25 
mg/1. The rapid mix G value of 325/s corresponds 200 and 90 rpm for 2-
blade and the 3x3 mesh impellers respectively. The G value of 30/s 
corresponds to 40 and 17 rpm for 2-blade and 3x3 mesh impellers 
respectively. Nimibers in parenthesis represent the homogenized mrbidity 
and 10, 20, 30, and 40 minute settled turbidity respectively following 
flocculation 



www.manaraa.com

262 

TEMP. > 23 C AND RAPID MIX pH » 7.S 
CLAY CONCENTRATION a 50mg/l 
ALUM DOSE - 2.25mg/l 
RAPID MIX G = 325/S 

3X3 MESH AND SMQ = 30/fr 

(49. 42. 27. 18) 

3X3 MESH AND SMG = 30/20 

2-BtADE AND SMG - 30/20 
i (54.47, 40.31) 

7^ \ - 'V 

01,44. 44. 3S) 

2-BLAOE AND SMG - 30/S 

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 
TIME(MINUTES) 

Figure 6.13. Effect of impeller geometry and slow mixing pattern on flocculation 
kinetics at pH = 7.8 and temperature = 23° C with alum as the coagulant. 
Clay concentration is 50 mg/1. The rapid mix G value of 325/s 
corresponds 200 and 90 rpm for 2-blade and the 3x3 mesh impellers 
respectively. The G value of 30/s corresponds to 40 and 17 rpm for 2-
blade and 3x3 mesh impellers respectively. The slow mix G value of 20/s 
corresponds to 29 and 12 rpm for 2-blade and 3x3 mesh impellers 
respectively. Numbers in parenthesis represent the homogenized turbidity 
and 10, 20, and 30 minute setded turbidity respectively following 
flocculation 
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Figure 6.14. Effect of impeller geometry and coagulant dose on flocculation kinetics at 
pH = 6.0 and temperature = 23° C with alum as the coagulant. Clay 
concentration is 50 mg/1. The rapid mix G value of 325/s corresponds 
200 and 90 rpm for 2-blade and the 3x3 mesh impellers respectively. The 
G value of 30/s corresponds to 40 and 17 rpm for 2-blade and 3x3 mesh 
impellers respectively. Numbers in parenthesis represent the homogenized 
turbidity and 10, 20, 30, and 40 minute setfled turbidity respectively 
following flocculation. X means that the turbidity measurement was not 
taken at that particular time. 
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higher, probably due to the massive precipitation of Al(0H)3(s), but flocculation was not 

effective due to high positive zeta potential resulting in high remaining turbidity after 30 

minutes of flocculation and 40 minutes of settling. In spite of generally poor 

performance overall, the 3x3 mesh performed far better than the 2-blade impeller under 

both sets of conditions (compare curve 1 versus 2, and curve 4 versus 5). 

Figure 6.15 illustrates the performance difference of two impellers at pH = 6.0 

with 2.25 mg/1 alum dose. The slow mixing was tapered from G = 30/s to 20/s after 20 

minutes. This figure also shows the tremendous impact of impeller geometry on alum 

flocculation as evidenced by much wider difference of PDA and turbidity readings 

(compare top curve for 3x3 mesh with middle curve for 2-blade) generated by the two 

impellers. From this figure and also from Figure 6.13, it can be visualized that the alum 

floes are weak and breakage of floes occur at the later period of flocculation, even with 

a slow mix G of 30/s at both pH levels. Tapering the slow mix G from 30/s to 20/s 

resulted in better kinetics at the later stage of flocculation and better turbidity removal. 

Figure 6.16 illustrates the performance of the above mentioned impellers in a 

fully sweep floe region. An alum dose of 20 mg/1 at pH = 7.8 (with no buffer) satisfies 

the condition of a fully sweep floe mode of flocculation. The kinetics were very fast 

with a very high positive zeta potential (about +30 mv). With only 20 minutes of slow 

mix and 20 minutes of settling both the impellers removed about 90% of the total 

turbidity. The flocculation index readings show that the impellers performed almost 

identically, but turbidity readings illustrate the importance of impeller geometry to some 

degree. This figure indicates that the impeller geometry is not that crucial in a sweep 
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Figure 6.15. Effect of impeller geometry and slow mixing pattern on flocculation 
kinetics at pH = 6.0 and temperature = 23° C with alum as the coagulant. 
Clay concentration is 50 mg/1. The rapid mix G value of 325/s 
corresponds 200 and 90 rpm for 2-blade and the 3x3 mesh impellers 
respectively. The G value of 30/s corresponds to 40 and 17 rpm for 2-
blade and 3x3 mesh impellers respectively. The slow mix G value of 20/s 
corresponds to 29 and 12 rpm for 2-blade and 3x3 mesh impellers 
respectively. Numbers in parenthesis represent the homogenized turbidity 
and 10, 20, 30 and 40 minute settled turbidity respectively following 
flocculation. 
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Figure 6.16. Effect of impeller geometry on flocculation kinetics at pH = 7.8 and 
temperature = 23° C with alum as the coagulant. Clay concentration is 50 
mgA. The rapid mix G value of 325/s corresponds 200 and 90 rpm for 2-
blade and the 3x3 mesh impellers respectively. The slow mix G value of 
30/s corresponds to 40 and 17 rpm for 2-blade and 3x3 mesh impellers 
respectively. Numbers in parenthesis represent the homogenized turbidity 
and 10, 20, 30, and 40 minute settled turbidity respectively following 
flocculation. X means that the turbidity measurement was not taken at 
that particular time 
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floe mode of flocculation, as compared to the A/D mode. But the 3x3 mesh impeller 

performed better in this mode, also. 

Figures 6.17 through 6.19 illustrate the effect of impeller geometry on alum 

flocculation with three different clay concentrations in the presence of buffer. In these 

exper iments  on ly ,  severa l  combina t ions  o f  NaHCOj  and  NajCO,  (very  l i t t l e  amount  o f )  

were used as buffer to maintain a constant pH. The bicarbonate ion is a specifically 

adsorbed anion such as sulfate ion, and tends to influence the coagulation mechanism. 

Letterman and Vanderbrook (1983) cited the work of Hohl et al. (1978) which stated 

that the sulfate ion decreases the charge of aluminum hydroxide surface by increasing 

the number of neutral (AlOH and AI2SO4) and negative (AlO" and AISO/) surface 

groups through ionization and complex formation reactions. Even though the effect is 

less severe, bicarbonate ion also reacts in similar fashion and competes with OH" in the 

coordination around the aluminum. 

Letterman and Vanderbrook (1983) also stated that low pH values tend to favor 

the flocculation with alum in presence of sulfate. Probably same is true for bicarbonate 

ion. But at high pH such as 7.8 used in this study, the flocculation kinetics became 

worse due to the formation of above mentioned neutral and negative surface groups and 

the reduction of positive charge of aluminum hydroxide surface. Letterman et al. (1979) 

illustrated that the turbidity removal vdth 10 mg/1 alum was much worse when pH was 

increased from 7.0 to 8.0 in presence of bicarbonate ion. The current study also 

indicated that at pH = 7.8 the kinetics were worse in the presence of buffer when the 

dose was kept constant. Two times the coagulant used in Figure 6.13 (v^athout buffer) 



www.manaraa.com

268 

2-

1.9-
1.8-
1.7-
1.6-
1.5= 

1.4-
1.3-
1.2-
1.1-

1 -

0.9-
0.8-
0.7-
0.6-
0.5-
0.4-
0.3-
0.2-
0.1-

0-

TEM '. = 23 C AND RAPID MIX pH = 7.8 
CLA'̂  CONCENTRATION = 50 mg/l 

cor ITAINS 43 mg/l NaHC03 

PLU3NaOH ASNEEDED 

SLO /V MIX G = 30/S FOR 15 MINS 

THE ^ TAPERED TO 20/S 

ALU »/l DOSE = 4,5 mg/l 
RApjiD MIX G = 325/S 

(54,34, 17, 10, 7) 

3X3 MESH IMPELLER 

/ 

(54,49, 40, 30,19) 

2-BLADE IMPELLER 

T—I—I—I—I—I—I—I—I—r 
-2 0 2 4 6 8 

-i—I—I—r -|—I—I—I—I—I—I—I—r 
10 12 14 16 18 20 22 24 26 28 30 
TIME(MINUTES) 

Figure 6.17. Effect of impeller geometry on flocculation kinetics at pH = 7.8 and 
temperature = 23° C with alum as the coagulant and buffer present. Clay 
concentration is 50 mg/l. The rapid mix G value of 325/s corresponds to 
200 and 90 rpm for 2-blade and the 3x3 mesh impellers respectively. The 
G value of 30/s corresponds to 40 and 17 rpm for 2-blade and 3x3 mesh 
impellers respectively. The slow mix G value of 20/s corresponds to 29 
and 12 rpm for 2-blade and 3x3 mesh impellers respectively. Numbers in 
parenthesis represent the homogenized turbidity and 10, 20, 30 and 40 
minute settled turbidity respectively following flocculation 
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Figure 6.18. Effect of impeller geometry on flocculation kinetics at pH = 7.8 and 
temperature = 23° C with alum as the coagulant and bi^er present Clay 
concentration is 25 mg/l. The rapid mix G value of 32S/s corresponds 
200 and 90 rpm for 2-blade and the 3x3 mesh impellers respectively. The 
slow mix G value of 30/s corresponds to 40 and 17 rpm for 2-blade and 
3x3 mesh impellers respectively. Numbers in parenthesis represent the 
homogenized turbidity and 10, 20, 30, and 40 minute settled turbidity 
respectively following flocculation 
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Figure 6.19. Effect of impeller geometry on flocculation kinetics at pH = 7.8 and 
temperature = 23° C with alum as the coagulant and buffer present. Clay 
concentration is 10 mgA. The rapid mix G value of 325/s corresponds 
200 and 90 rpm for 2-biade and the 3x3 mesh impellers respectively. The 
slow mix G value of 30/s corresponds to 40 and 17 rpm for 2-blade and 
3x3 mesh impellers respectively. Niunbers in parenthesis represent the 
homogenized turbidity and 10, 20, 30, and 40 minute settled turbidity 
respectively following flocculation 
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was required in Figure 6.17 in presence of 43 mg/1 NaHCO, to achieve similar zeta 

potential (around -13 mv) and flocculation kinetics with 50 mg/1 clay suspension. In 

both the situations (with buffered and unbuffered suspension) the 3x3 mesh impeller 

was superior to the 2-blade impeller and the margin of difference was similar. 

When the results are compared between Figures 6.12 and 6.18, a slightly 

different picture was seen. The dose was doubled in Figure 6.18 in order to provide for 

the effects of the buffer, but the destabilizing characteristics were different this time for 

the two cases. The zeta potential for experiments in Figure 6.18 was around -15 mv as 

compared to that found in Figure 6.12, around -10 mv. In both situations, the mesh 

impeller performed almost identically, but the performance of the 2-blade impeller was 

noticeably impaired in presence of buffer with minor modification of destabilization 

characteristics. This indicates that the 3x3 mesh impeller can maintain its performance 

over a broader range of destabilization characteristics of suspended particles than the 2-

blade impeller. 

Figure 6.19 contains the results of alum flocculation performed with 10 mg/1 

clay concentrations. Even with more favorable destabilization characteristics of particles 

(zeta potential around -7 mv in Figure 6.19 as compared to -13 mv in Figure 6.17), the 

flocculation kinetics were much worse in Figure 6.19. The kinetics were severely 

limited by the number of particle contacts in Figure 6.19, due to much lower particle 

number concentration. In spite of the generally slow kinetics under these conditions, the 

3x3 mesh impeller was significantly better than the 2-blade impeller. 
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6.U. Effect of rapid mixing intensity 

Figures 6.20 through 6.23 illustrate the effect of rapid mixing intensity on 

flocculation kinetics under four different physico-chemical conditions. In Figures 6.20 

and 6.21, all the physico-chemical conditions are the same, except the temperature and 

the dose. As mentioned earlier, the ferric nitrate dose was increased from 2 mg/1 to 3 

mg/1 when temperature was changed from 23° to 5° C in order to achieve similar zeta 

potential reading after the rapid mixing stage. In both of these figures, the performance 

became worse when the rapid mix G was increased beyond a certain value. The rapid 

mix G values of 575/s and 460/s were found to be optimum at 23° and 5° C respectively 

with ferric nitrate coagulant at pH = 7.8 v^dth a zeta potential reading around -10 mv. It 

should be kept in mind that the energy input was the same at both temperatures in order 

to achieve those rapid mix G values. 

A rapid mix G of 450/s was found to be optimum for alum coagulation at pH = 

7.8 and temperature = 23° C under A/D region as shovm in Figure 6.22. The 

performance was worse when the intensity was increased to a G value of 575/s. The 

rapid mixing intensity of 450/s was also found to be optimum for flocculation with 

ferric nitrate at pH = 6.0 and temperature = 23° C under A/D region, as shown in 

Figure 6.23. The kinetics became significantly worse when the intensity was raised to a 

G value of 575/s. This was evidenced by both the PDA and the turbidity readings. It 

should be noted that all the rapid mixing intensity tests were performed writh the 2-blade 

impeller. 
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Figure 6.20. Effect of rapid mixing intensity on flocculation kinetics at pH = 7.8 and 
temperature = 23° C with ferric nitrate as the coagulant. The rapid mix G 
values of 200, 325, 450, 575, and 700/s correspond to 143, 200, 248, 293, 
and 335 rpm respectively. The slow mix G value of 30/s corresponds to 
40 rpm. Numbers in parenthesis represent the homogenized turbidity and 
10, 20, and 30 minute settled turbidity respectively following flocculation 
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Figure 6.21. Effect of rapid mixing intensity and coagulation injection pattern on 
flocculadon kinetics at pH = 7.8 and temperature = 5° C with ferric 
nitrate as the coagulant Numbers in parenthesis represent the 
homogenized turbidity and 10, 20, and 30 minute settled turbidity 
respectively following flocculation 
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Figure 6.22. Effect of rapid mixing intensity on flocculation kinetics at pH = 7.8 and 
temperature = 23® C with alum as the coagulant The rapid mix G values 
of 325, 450, and 575/s correspond to 200, 248, and 293 rpm respectively. 
The slow mix G value of 30/s corresponds to 40 rpm. Numbers in 
parenthesis represent the homogenized turbidity and 10, 20, and 30 
minute settled turbidity respectively following flocculation 
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Figure 6.23. Effect of rapid mixing intensity on flocculation kinetics at pH = 6.0 and 
temperature = 23° C with ferric nitrate as the coagulant. The rapid mix 
G values of 200, 325, 450, and 575/s correspond to 143, 200, 248, and 
293 rpm respectively. The slow mix G value was 30/s (40 rpm). Numbers 
in parenthesis represent the homogenized turbidity and 10, 20, and 30 
minute settled turbidity respectively following flocculation 
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6.1.4. Effect of rapid mixing pattern 

Figures 6.24 through 6.27 illustrate the results of rapid mixing pattern on 

flocculation kinetics of kaolin clay with ferric nitrate as the coagulant. Using a 

dimensionless Gt value of 27000, two rapid mixing patterns were tested under four 

different physico-chemical conditions. The two patterns include, high intensity (G = 

450/s) mixing with short duration (1 minute), and low intensity (G = 2251s) mixing with 

longer duration (2 minutes). From these figures, it can be perceived that the low 

intensity-longer duration mixing outperformed the high intensity-short duration mixing, 

in almost all the situations. This was observed irrespective of impeller geometry, as well 

as the dose and temperature variations. Figure 6.25 appears to be the only exception 

where the performance was almost the same. The performance differences in the other 

three figures were more pronounced at low dose and low temperature situations 

(Compare Figure 6.27 with Figures 6.24 and 6.26). 

6.1.5. Effect of coagulant injection pattern 

Curves 3 and 4 of Figure 6.21 and curves 2 and 3 of Figure 6.28 portray the 

effect of coagulation injection pattern during rapid mix on flocculation kinetics of kaolin 

clay with ferric nitrate as the coagulant at pH = 7.8 at two temperatures. Two types of 

coagulation injection patterns were employed as mentioned earlier: slow injection over a 

period of 10 second duration, and pulse injection v^athin a second. By comparing those 

curves of the mentioned figures it can easily be visualized that slow injection of 

coagulant yields better results than the pulse injection and the difference was more 
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Figure 6.24. Effect of rapid mixing pattern on flocculation kinetics at pH = 7.8 and 
temperature = 23° C with ferric nitrate as the coagulant TTie G values of 
30, 225, and 450/s correspond to 63, 256, and 493 rpm respectively. 
Numbers in parenthesis represent the homogenized turbidity and 10, 20, 
and 30 minute settled turbidity respectively following flocculation 
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Figure 6.25. Effect of rapid mixing pattern on flocculation kinetics at pH = 6,0 and 
temperature = 23° C with ferric nitrate as the coagulantThe G values of 
30, 225, and 450/s correspond to 40, 155, and 248 rpm respectively. 
Numbers in parenthesis represent the homogenized turbidity and 10, 20, 
and 30 minute settled turbidity respectively following flocculation 
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Figure 6.26. Effect of rapid mixing pattern on flocculation kinetics at pH = 7.8 and 
temperature = 5° C with ferric nitrate as the coagulant 
Numbers in parenthesis represent the homogenized turbidity and 10, 20, 
and 30 minute settled turbidity respectively following flocculation 
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Figure 6.27. Effect of rapid mixing pattern on flocculation kinetics at pH = 7.8 and 
temperature = 5° C with ferric nitrate as the coagulant. Odd numbered 
curves represent a rapid mix G value of 180/s for 2 minutes (70 and 256 
rpm for 3x3 mesh and A310 impellers respectively) and the even 
numbered curves represent a rapid mix G value of 360/s for 1 minute 
(112 and 493 rpm for 3x3 mesh and A 310 impellers respectively). Slow 
mix G value of 24/s corresponds to 17 and 63 rpm for 3x3 mesh and 
A310 impellers respectively. Numbers in parenthesis represent the 
homogenized turbidity and 10, 20, and 30 minute settled turbidity 
respectively following flocculation 
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Figure 6.28. Effect of dosing solution concentration and coagulant injection pattern on 
flocculation kinetics at pH = 7.8 and temperature = 23° C with ferric 
nitrate as the coagulant The 2-blade impeller was used. The G values of 
450 and 30/s correspond to 248 and 40 rpm respectively. Numbers in 
parenthesis represent the homogenized turbidity and 10, 20, and 30 
minute settled turbidity respectively following flocculation 
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pronounced at cold temperature than at warm temperature. This was confirmed by both 

PDA and turbidity readings. The experiments were done with 2-blade impellers. 

6.1.6. Effect of dosing solution concentration 

The curves 1 and 3 of Figure 6.28, and the Figures 6.29 and 6.30 indicate that 

the concentration of dosing solution has a measurable impact on flocculation kinetics 

with ferric nitrate coagulant. When curves 1 and 3 of Figure 6.28 are compared, better 

kinetics are seen with the dilute dosing solution as evidenced by the PDA reading. But 

the turbidity readings are almost the same in both cases. From Figure 6.29 it is seen 

that measurable improvement of kinetics was achieved as evidenced by both PDA and 

turbidity readings, when the dosing solution was diluted from 20 mg/ml to 10 mg/ml, 

but further dilution to 5 mg/ml did not yield better results. Some difference in PDA 

reading was observed due to difference in initial PDA readings. Both the above 

situations were at warm temperature (23° C). Figure 6.30 illustrates the effect of 

dilution at cold temperature. This figure shows that the earlier kinetics and the 30 

minute settled turbidity reading were better when the dosing solution was diluted to 10 

mg/ml from 20 mg/ml. The later period kinetics and the intermediate settled turbidity 

removals were better for 20 mg/ml dosing solution. But much better kinetics were 

observed when the dosing solution was fiirther diluted to 5 mg/ml as seen by marked 

improvement of both the PDA and turbidity removal readings. 

From these results one can easily imderstand that the concentration of coagulant 

dosing solution definitely has some impact on flocculation kinetics with ferric nitrate 
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Figure 6.29. Effect of dosing solution concentration and on flocculation kinetics at pH 
= 7.8 and temperature = 23° C with ferric nitrate as the coagulant The G 

. values of 450 and 30/s correspond to 112 and 17 rpra respectively. 
Numbers in parenthesis represent the homogenized turbidity and 10, 20, 
and 30 minute setded turbidity respectively following flocculation 
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Figure 6.30. Effect of dosing solution concentration and on flocculation kinetics at 
pH = 7.8 and temperature = 5° C with ferric nitrate as the coagulant 
Numbers in parenthesis represent the homogenized turbidity and 10, 20, 
and 30 minute settled turbidity respectively following flocculation 
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coagulant, and that the optimum dilution varies for different conditions. 

6.1.7. Effect of number of coagulant injection ports 

Figure 6J1 illustrates the performance difference between 1-point injection and 

2-point injection of coagulant. The PDA readings generated by the two injection 

methods are almost identical but the turbidity readings indicate that 2-point injection 

performed better than 1-point injection. The 2-point injection removed more primary 

particles and created better settling, even though the flocculation index values were not 

much different from those produced by 1-point injection. 

6.1.8. Effect of slow mixing intensity 

From Figures 6 J2 through 636 it appears that slow mixing intensity is also an 

important mixing variable. Figures 6 J2 through 634 illustrate the results at cold water 

temperature with ferric nitrate coagulant. From these figures it is evident that if the 

constant-G mode is used for flocculation, then the optimum performance can be 

obtained near a certain G value. Below this value the kinetics are worse and above that 

value, the breakage of floes occurs during the later period of flocculation. Compared to 

24/s, a G value of 48/s produced a significantly better result with both PDA and 

turbidity readings. But further increase of G value to 72/s apparently resulted in floe 

breakup during the later period of flocculation evidenced by worse turbidity readings. 

This has been observed with all the three different impellers tested here. The slow 

mixing intensity is also important at warm temperature as shown in Figures 635 and 
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Figure 6.32. Effect of slow mixing intensity on flocculation kinetics at pH = 7.8 and 
temperature = 5° C with ferric nitrate as the coagulant. 2-blade impeller 
was used. The rapid mix G value of 360/s conesponds to 248 rpm. 
Numbers in parenthesis represent the homogenized turbidity and 10, 20, 
and 30 minute setded turbidity respectively following flocculation 
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Figure 6.33. Effect of slow mixing intensity on flocculation kinetics at pH = 7.8 and 
temperature = 5° C with ferric nitrate as the coagulant 3x3 mesh impeller 
was used.The rapid mix G value of 360/s corresponds to 112 rpm. 
Numbers in parenthesis represent the homogenized turbidity and 10, 20, 
and 30 minute settled turbidity respectively following flocculation 
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Figure 6.34. Effect of slow mixing intensity and pattern on flocculation kinetics at 
pH = 7.8 and temperature = 5° C with ferric nitrate as the coagulant. 
A 310 impeller was used.The rapid mix G value of 360/s corresponds to 
493 rpm. Numbers in parenthesis represent the homogenized turbidity and 
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RAPID 
1X1 ME 
pH = 6 

iNCENTRATION = 25 mg/l 

NITRATE D0SE=1mg/L 
SOLUTION = 10 mg/ml 

lATURE = 23 C 
MIX G = 325/S 
SH IMPELLER 
0 

TAPERED G = 60/S FOR 10MINS 
THEN 30/S FOR NEXT 10MINS 

(22, 5.9, 5.6, 5.0) 

-2 

S(.OW MIX G = 60/S 

(22, 6.7, 5.6, 4.6) 

T—I r 
2 

(22, 7.1, X, 6.1) 

SLOW MIX G = 30/S 

6 8 10 12 14 16 18 20 

TIME(MINUTES) 

Figure 6.35. Effect of slow mixing intensity and pattern on flocculation kinetics at 
pH = 6.0 and temperature = 23° C with feme nitrate as the coagulant 
1x1 mesh impeller was used. The G values of 325, 60, and 30/s 
correspond to 93, 31, and 20 ipm respectively. Numbers in parenthesis 
represent the homogenized turbidity and 10, 20, and 30 minute settled 
turbidity respectively, following flocculation. X means that the turbidity 
reading was not taken at that particular time 
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Figure 6.36. Effect of slow mixing intensity and pattern on flocculation kinetics at 
pH = 6.0 and temperature = 23° C with ferric nitrate as the coagulant 2-
blade stack impeller was used. The G values of 325, 60, and 30/s 
correspond to 180, S3, and 33 rpm respectively. Numbers in parenthesis 
represent the homogenized turbidity and 10, 20, and 30 minute settled 
turbidity respectively following flocculation 
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636, but the importance is not as crucial as that found at cold temperature. 

6.1.9. Effect of slow mixing pattern 

From Figures 6.13, 6.15 and 6.34 tiirough 6.36, it appears that slow mixing 

pattern is also an important factor in flocculation efficiency. By tapering the intensity to 

a lower G value during the later period of flocculation, much better or comparable 

flocculation efficiency can be achieved with significant energy savings. This was seen 

irrespective of impeller geometry, coagulant type, water temperature, and pH values. 

Significant improvement of kinetics was seen wdth both the 3x3 mesh and 2-blade 

impellers in alum flocculation at pH = 7.8 and temperature 23° C when the slow mixing 

G was reduced fi"om 30/s to 20/s after 15 minutes of flocculation as shown in Figure 

6.13. Similar improvement was also noticed at pH = 6.0 when the slow mixing G was 

reduced to 20/s from 30/s after 20 minutes of flocculation as shown in Figure 6.15. 

Curves 1 and 2 of Figure 634 illustrate that flocculation can be improved 

significantly by tapering the slow mixing intensity at the different stages of mixing, 

even with a lower total dimensionless Gt value. Similarly, in Figures 635 and 636, a 

tapered flocculation with G = 60/s for 10 minutes followed by a G = 30/s for the next 

10 minutes, performed as good as a constant G = 60/s for 20 minutes as shown for 1x1 

mesh and 2-blade stack impellers, respectively. 



www.manaraa.com

294 

6.1.10. Effect of opening size of wire mesh impeller 

Two sets of experiments were conducted to determine the impact of opening size 

of the wire mesh impeller at constant power input as shown in Figures 6.37 and 6 J8. 

Larger opening wire mesh achieved better results in both of these conditions (low dose 

at low pH in the A/D region and high dose at high pH in the sweep flocculation region) 

with constant power input as shown in those figures. Smaller mesh opening impeller 

dissipates more energy due to the drag between the fluid and the larger number of wires 

present in the flow area. Therefore, at constant power input, the impeller with smaller 

mesh opening had to be rotated at lower speed to achieve constant power input, which 

resulted in lower tip speed and lower local velocity and velocity fluctuations and 

therefore, lower probability of particle collisions. Figure 639 illustrates the performance 

among four impellers at constant speed (20 rpm for all). Three mesh impellers with 

different opening sizes (one, nine and sixty four square openings per square inch) and 

one vdthout mesh, only with the 7 mm wide outer frame (frame only). The flocculation 

index versus time curves for 3x3 mesh, 1x1 mesh, and the frame only impellers were 

almost identical at constant speed, but the turbidity readings produced by those three 

impellers were noticeably different. The 3x3 mesh and the frame only impeller 

performed best and worst respectively, in terms of turbidity removal. The 8x8 and 3x3 

mesh impellers achieved almost identical turbidity readings even though they produced 

different flocculation index versus time curves. 

From the above figures it is evident that the particle aggregation during 

flocculation is caused not only by the large scale flows generated by the effective radius 
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Figure 6.37. Effect of opening size of the mesh impeller on flocculation kinetics at 
pH = 6.0 and temperature = 23° C wi& ferric nitrate as the coagulant. 
The G value of 450/s corresponds to 112 rpm for all the three impellers 
and a value of 30/s corresponds to 15, 17, and 20 rpm for 8x8, 3x3, and 
1x1 mesh impellers respectively. Numbers in parenthesis represent the 
homogenized turbidity and 10, 20, and 30 minute settled turbidity 
respectively following flocculation 
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Figure 6.38. Effect of opening size of the mesh impeller on flocculation kinetics at 
pH = 7.8 and temperature = 23° C with ferric nitrate as the coagulant 
The G value of 450/s conesponds to 112 rpm for both the impellers and 
a value of 30/s corresponds to 17 and 20 rpm for 3x3 and 1x1 mesh 
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Figure 6.39. Effect of opening size of the mesh impeller on flocculation kinetics at 
pH = 6.0 and temperature = 23° C at constant speed with ferric nitrate as 
the coagulant. No G versus rpm curve was developed for the frame only 
impeller.The 112 rpm speed corresponds to G value of 450/s for three 
opening size mesh impellers. The 20 rpm speed corresponds to G values 
of 30/s, 40/s, and 49/s for 1x1, 3x3, and 8x8 mesh impellers. Numbers in 
parenthesis represent the homogenized turbidity and 10, 20, and 30 
minute settled turbidity respectively folloAving flocculation 
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(distance to the outer edge of the stirrer from the axis of its shaft) of the impeller or the 

tip speed, but also by the small scale motions generated by local velocity (proportional 

to impeller rotational speed and the distance of wire from the center of impeller shaft) 

and velocity fluctuations (created by wire mesh). The capture of primary particles as 

evidenced by the turbidity removal was improved by the wire mesh. More energy was 

required for the impellers with smaller mesh openings due to more drag between the 

larger number of wires and the fluid. Thus at constant speed, energy input increases as 

mesh size decreases which should benefit flocculation kinetics. However, no 

improvement of turbidity readings was observed when the number of mesh was 

increased from nine (3x3 mesh) to sixty four (8x8 mesh) per square inch. It is possible 

that the smallest opening wire mesh did not assist that much in particle growth. Rather, 

it restricted the growth of floes after some time of flocculation by constricting their 

passage through the opening, or as the floes grew rapidly, they also broke up more due 

to higher energy input and/or due to more frequent collisions with the larger number of 

wires present per unit flow area. As a result, the smallest mesh opening produced more 

uniform sized particles but fewer big floe particles (which was visually observed) 

resulting in lower flocculation index readings. 

6.1.11. Effect of combination of impellers 

These experiments were conducted to observe the contribution of two different 

impellers during two mixing stages of the coagulation-flocculation process. Figure 6.40 

contains the results of these experiments. Curves 1 and 4 correspond to the experiments 
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Figure 6.40. Effect of impeller type and mixing pattern on flocculation kinetics at 
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performed with the 3x3 mesh and the A 310 impellers respectively. A single impeller 

was used for both rapid and slow mixing stages as was done in all the other previous 

cases. Curve 2 corresponds to the experiment where the rapid mix was done with the 

A 310 impeller and the slow mix was done with the 3x3 mesh impeller. The sequence 

was reversed in the experiment corresponding to curve 3. 

The worst result was obtained when both rapid and slow mixing operations were 

performed with the A 310 impeller (curve 4). Performance was slightly improved when 

the 3x3 mesh was used for rapid mixing only (curve 3). The performance was even 

more dramatic when the 3x3 mesh impeller was used for slow mixing only (curve 2). 

The best performance was obtained when both the mixing operations (rapid and slow) 

were performed with the 3x3 mesh impeller (curve 1). From these results it is clear that 

the better impeller (3x3 mesh) performs better in both the mixing stages, and that this 

impeller contributes more during slow mixing stage than during rapid mixing stage. 

6.2. Discussion of Results 

Figures 6.1 through 6.19 presented the comparisons among different impeller 

geometries studied during this research. The fundamental question of interest in these 

experiments deals with the homogeneity of turbulent flow field in a batch reactor. How 

important is it to introduce the energy over 90% of the suspension volume inside the 

reactor as opposed to only 5% of the suspension voliraie? All the turbulent flow field 

parameters commonly used in coagulation-flocculation process, such as, G, rik, and e, 
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assume a volume averaged e. This assumption implies that the energy put into the 

suspension is evenly distributed over 100% of the suspension volume contained in the 

reactor. Figures 4.11.an(l 4.12 give an indirect indication of the non-homogeneity of e 

in the reactor flow field. These two figures show that the turbine impellers must turn 

quite rapidly to put the same energy into the suspension as the paddle impellers. So it 

follows that the energy dissipation near the blade of these impellers must be high. 

Many research works (Cutter, 1966; Okamoto et al., 1981; and Placek et al., 

1986) have shown that the local energy dissipation rate is highly position dependent, 

and an order of magnitude of available energy variation can be seen between the 

impeller region and the bulk of the tank inside a batch reactor equipped with Rushton 

turbine impeller. Several research works, (Clark, 1994; McConachie, 1991; Hanson and 

Cleasby, 1990; Ives, 1984; Bhole and Limaye, 1977; Patwardham and Mirajgaonkar, 

1970; Argaman and Kaufman; 1970) observed an impact of impeller geometry on the 

coagulation-flocculation process. All of those studies indicated a measurable effect of 

geometry on flocculation kinetics. 

From this study also, a significant effect of geometry has been observed on 

flocculation kinetics. Three impeller geometries (A310, 2-blade, and 3x3 mesh) were 

employed in most of the flocculation experiments with ferric nitrate coagulant under 

varying physico-chemical conditions. Four impeller geometries (2-blade, 1x1 mesh, 

modified stake, and 2-blade stack) were compared to observe the geometry effect under 

two sets of physico-chemical conditions. The performance difference between two 

paddle type impellers (1x1 mesh and 2-blade stack) was tested in another set of 
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conditions. All the alum flocculation experiments were performed with 2-blade and 3x3 

mesh impellers under a variety of conditions. 

Among the three impellers (A310, 2-blade, and 3x3 mesh) used in most of the 

treatment sets, the 3x3 mesh performed best and the A310 impeller performed worst 

under all physico-chemical conditions. From Figure 6.40 it can be seen that the 3x3 

mesh impeller performs better than the A310 impeller in both the rapid and slow mixing 

stages. This means that the better impeller will give better efficiency in both stages of 

the coagulation-flocculation process. The better geometry is the one which distributes 

energy inside the reactor in a more decentralized fashion. If the flow patterns generated 

by the two turbine impellers (A310 and 2-blade) are considered (Figure 4.13), then it is 

seen that the 2-blade impeller distributes energy through two circulating loops and this 

distribution of energy is more decentralized than that by the A310 impeller through a 

single circulating loop. 

The mesh impeller generates more homogeneous turbulence than the turbine 

impellers and reduces the characteristic mixing time through direct contact with the 

maximum possible fluid volume. This direct contact of the mixing equipment with 

almost the entire volume of fluid reduces the necessity of bulk flow and increases 

velocity fluctuation of fluid particles with respect to time and space for a given energy 

input, and thereby increases the number of collisions among suspended particles per unit 

time per unit volume of suspension. Therefore, this impeller will perform better in all 

types of physico-chemical conditions as shown in Figures 6.1 through 6.19 than the 

other two impellers (turbine type). Hanson and Cleasby (1990) and Argaman and 
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Kauftnan (1970) found that the Stake and Stator impeller which distributes power 

throughout the tank was superior to the 2-blade turbine impeller. From the results of 

experiments by Ives (1984), it was seen that the mesh impeller performed best or near 

best among nine different impellers in terms of both turbidity removal and filtration 

number. 

Patwardham and Mirajgaonkar (1970) concluded that the impeller that displaced 

the water most performed best in flocculation experiments. From their flocculation 

results showTi in Figure 3.52 it appears that impeller 5 with the largest paddle edge 

length (proportional to water displacement) achieved the highest percentage of turbidity 

removal. Clark et al. (1994) studied four impeller types in flocculation. Their results 

were not conclusive, but "there was some tendency toward a mild degradation in 

performance moving from the rake to the foil to the pitched blade to the Rushton 

impeller" (p. 125 ). 

From Figures 6.9 and 6.10 it appears that three impellers, 1x1 mesh, modified 

stake and 2-blade stack, performed almost identically and the 2-blade impeller 

performed much worse than the other three. The 1x1 mesh and the modified stake 

impellers put energy into the reactor in the most decentralized or distributive fashion 

(over 90% of the reactor volume). The 2-blade impellers delivers energy into the reactor 

in the most centralized fashion (within 5% of the reactor volume). The 2-blade stack 

impeller puts energy into the reactor in a fashion in between these two extremes. When 

the geometry was changed from 2-blade to 2-blade stack, a significant improvement in 

flocculation kinetics was observed with the same energy input. This is due to a three 
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fold upgrade towards the distributive energy input in the reactor. Six circulating loops 

generated by the 2-blade stack impeller as shown in Figure 4.14, circulates energy in a 

way to generate much more homogeneous turbulence flow field inside the reactor than 

that present with only two circulating loops generated by the 2-blade impeller. 

When the 2-blade stack impeller was compared with two paddle impellers (1x1 

mesh and modified stake) in terms of flocculation efficiency, it performed as good as 

those two impellers under the two sets of physico-chemical conditions used here. This 

indicates that the extent of homogeneity of turbulence produced by these three impellers 

inside the reactor under these conditions is comparable and/or not sufficiently different 

to cause any change in flocculation efficiency. 

The following concepts are important, in order to have a better understanding of 

the difference in performance between the turbine and mesh impellers. 

1. As mentioned previously in Chapter 3, the largest (i.e., the initial) eddy size is 

always associated with the impeller geometry (i.e. for 2-blade impeller the diameter of 

the initial vortex can be considered to be roughly the same size as the impeller blade 

width). This vortex is then stretched by interacting with other vortices around it by a 

mechanism called vortex stretching. The smallest diameter this vortex stretches to 

(through gradual energy cascade and size reduction) is approximately the size of the 

Kolmogorov microscale, where the energy is dissipated by viscosity. Below this 

microscale, flocculation is the result of localized shear fields induced by the vortex 

stretching process as shown in Figure 3 J9. The smaller the microscale of turbulence, 
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the more intense the localized velocity gradients (or localized shear fields). 

2. With the turbine impellers, energy is put into a central location with the 

largest eddies and then energy is transferred through vortex stretching to other eddies of 

different size in remote locations through a space filling process like heat or mass 

diffusion to achieve global mixing. This process of energy transfer or eddy cascade can 

be expedited only by increasing the energy input (the product of power input and 

mixing time) which accomplishes the mixing. However there is no one-to-one 

correspondence between power input and mixing time, since power input may go on to 

mix material that has already been mixed. From Figures 3.48 and 3.49 it is clear that 

more energy is dissipated in the more energetic region. So it is quite possible that a 

significant energy could be lost near the impeller before it reaches the other locations of 

the tank causing poor global mixing. 

3. Figure 331 illustrates that with every step of energy cascade some energy is 

directly lost to the internal energy of the fluid. So the more the steps in the cascade the 

greater the amount of energy that will be lost to internal energy of the fluid, reducing 

the available kinetic energy for particle transport. Casson and Lawler (1990) illustrated 

that the wire mesh grid impeller produced small scale eddies directly inside the reactor. 

The wire mesh impellers used here produced similar production scale eddies throughout 

the reactor, which are supposed to be much smaller than the production scale eddies 

generated by the turbine impellers. It is possible that these production scale eddies 
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generated by the mesh impeller, require fewer number of steps in the cascade and 

thereby much shorter time to be stretched to an effective size for flocculation. 

4. From the above discussion it is now clear that the mesh impeller produces 

much smaller initial eddies distributed all over the tank by significantly reducing the 

time of the vortex space filling process and the energy transfer process from largest 

eddies to smallest eddies, than the turbine impellers. Probably, if not definitely, it takes 

only one to two generations of eddies for the 3x3 mesh impeller to achieve a 

homogenous isotropic turbulent flow field as opposed to many generations of eddies 

required for the turbine impellers. Hanson (1989) stated, "If the floes in the reactor are 

much smaller than the production scale eddies, then any variability introduced by 

geometry change is due to the non-homogeneous, anisotropic nature of the flow field. If 

the floes are similar in size to the production scale eddies, the variability may be due to 

either the change in the eddy distribution at the production scale, or it may be due to 

non-homogeneous, anisotropic nature of the flow field" (p. 309). 

Figures 6.20 through 6.23 illustrated the effect of rapid mixing intensity on 

flocculation kinetics under four different physico-chemical conditions. From the figures 

it was seen that there is an optimum rapid mixing intensity for each set of conditions. 

Beyond that optimum intensity, the kinetics become worse. This can be explained in a 

fashion similar to Gregory's (1989) "electrostatic patch" theory of polymeric flocculation 

which states, "polyelectrolyte adsorbs on an oppositely charged particle in such a way 

that there are "patches" of excess charge because of local charge reversal and areas of 
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unoccupied surface still bearing the original particle charge. Particle with polymer 

adsorbed in this "patchwise" manner can interact in such a way that positive and 

negative areas of different particles are adjacent, giving strong electrical attraction" (p. 

203). 

For optimum coagulation, a certain percentage of particle surface area must be 

covered with polyelectrolytes. Gregory further stated that the patch type adsorption 

occurs when the charge density of the polyelectrolyte is much greater than that of the 

particle surface. So it is possible that for each set of physico-chemical conditions, there 

has to be a certain rapid mixing intensity that will produce the required coverage ratio 

with particular types of polymeric species for optimum coagulation. 

Another point of importance to be noted, is the role of rapid mixing. The 

duration of rapid mixing employed in this study was 60 seconds. Usual practice is to 

use 30 to 60 seconds. This duration of rapid mixing not only disperses the coagulant 

throughout the reactor before any significant chemical change has occurred, but also 

brings about the initial stages of particle collisions and subsequent aggregation. These 

aggregates act as the nuclei for further growth. This was evidenced by a gradual change 

of flocculation index during rapid mix. When the mixing intensity is beyond the 

optimum value, this aggregation or the growth of the particles is somewhat prevented 

due to excessive shear, slowing down the overall kinetics of flocculation. It should be 

kept in mind that various rapid mixing intensities did not produce any noticeable 

difference in zeta potential readings of samples taken immediately after rapid mix. 



www.manaraa.com

308 

Srivastava (1988) also proved by particle counting technique that flocculation was 

occurring during the period of rapid mixing with either alum or cationic polymer. He 

found a significant reduction in the number of primary particles at the end of the rapid 

mixing period. 

Figures 6.24 through 6.27 also indicate that particle aggregation occurs during 

rapid mix. These figures demonstrate that low energy mixing for longer duration is 

better than high energy mixing for short duration in most cases. It was observed that the 

zeta potential readings produced by the two rapid mixing intensities were comparable, 

but a larger increase of the flocculation index was observed at the end of rapid mixing 

for the low intensity-longer duration pattern, than for the high intensity-short duration 

pattern. This indicated that the hydrolysis products of metal coagulants produced during 

the two rapid mixing patterns were not much different. Any deficiency in the formation 

of optimum species with lower intensity was surpassed by the formation of more nuclei 

during the additional 1 minute of rapid mixing. 

The occurrence of particle aggregation during rapid mix can be further confirmed 

from Figure 6.40. The zeta potentials after rapid mix were near -10 mv in all the four 

experiments. But if curves 3 and 4 are compared, it appears that the kinetics are better 

for rapid mixing with the 3x3 mesh impeller. The 3x3 mesh impeller produced a larger 

number of nuclei during rapid mix, that accelerated the aggregation process during slow 

mixing stage. Slow mixing was done with the A 310 impellers in both cases. 

From Figures 6.28 through 6 JO it appears that the concentration of dosing 

solution has some effect on flocculation kinetics. Diluting the dosing solution gives the 
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opportunity to add more volume of coagulant in the reactor for the same coagulant dose, 

thereby reducing the volume ratio of the coagulant stream and the clay suspension. 

Baldyga and Bourne (1984c) and Bourne et al. (1981a) have demonstrated that the 

product distribution parameter, was lower and the mixing efficiency was higher 

when the volumetric ratio of two reacting streams was lowered during a series parallel 

reaction. It should be remembered that the is an indirect measure of mixing 

efficiency, the value of which decreases with higher efficiency of mixing. During the 

rapid mixing stage in the coagulation-flocculation process, the provision of a lower 

volume ratio between two reacting streams improves mixing by increasing the relative 

interfacial surface area between two reacting streams. More and more clay primary 

particles come in contact with the larger initial volume of coagulant, and later with a 

larger number of coagulant clumps after it has been broken down by the shear fields. 

That is why some improvement was seen when the coagulant dosing solution was 

diluted. But there should be a limit to the extent of dilution, in order to avoid any 

chemical change of the coagulant, such as the onset of precipitation of metal 

hydroxides, before the diluted solution is used. 

The 2-point injection performed slightly better than 1-point injection in turbidity 

removal, as shown in Figure 6J1. When a small liquid stream is added to a larger 

volume of liquid, the simplistic model shows that the small stream will be broken down 

into smaller clumps due to shear produced in the turbulent field, before the 

concentration gradients of the two liquids are eliminated by the diffusion process. One 

stream is broken down to two or more clumps and then into many smaller clumps. 



www.manaraa.com

310 

When the same volume of coagulant is divided into two injection portions and injected 

through two ports of the reactor into the clay suspension, the dispersion process of the 

coagulant stream (inside the reactor) is somewhat accelerated, providing the opportunity 

for more primary particles to come in contact with the coagulant in a certain time 

period. As a result, the flocculation kinetics are accelerated. The 2-point injection also 

reduces the localized overdose and distributes the coagulant in a more uniform manner 

than the 1-point injection. 

Slow injection of coagulant also improves the kinetics (shown in Figures 6.21 

and 6.28) by bringing the fresh clay suspension in contact with each additional drop of 

coagulant solution, thereby distributing the coagulant more uniformly throughout the 

reactor content without any localized overdose. Slow injection accelerates the initial size 

reduction process of the coagulant stream through dispersion, creating much larger 

interfacial area between the coagulant and the clay suspension for increased mass 

transport. David and Clark (1991) indicated that the product distribution parameter 

varies inversely with the square root of the power input per unit mass in case of drop 

vvdse addition (slow injection of coagulant in the current study) and that X, varies 

inversely wath the one third power of the power input per unit mass for pulse addition. 

That means, for a constant power input the Xj is lower and mixing efficiency is higher 

with dropwise addition (or slow injection of coagulant). 

Slow mixing intensity and pattern are the two most important mixing variables, 

after impeller geometry. Desired flocculation results can not be obtained if the proper 

slow mixing intensity and pattern are not chosen. Even after destabilization to a 
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comparable zeta potential and the same slow mix energy input (energy corresponding to 

G = 30/s at 23° C and to G = 24 at 5° C) the flocculation kinetics were much worse at 

5° C than at 23° C (Figure 6.41). The reason was that energy input at 5° C was not 

enough to generate the required number of particle contacts to produce kinetics similar 

to those observed at 23° C. At 5° C, fluid viscosity is significantly higher (almost 50%) 

than the viscosity at 23° C. The Kolmogorov length scale is also larger and more energy 

is lost through viscous dissipation to the internal energy of the fluid in every step of 

cascade, providing less energy available for particle transport. 

Kinetics were significantly better when the energy input was increased from a G 

value of 24/s to 48/s at 5° C. But flocculation became worse when the G value was 

increased from 48/s to 72/s at 5° C due to increased floe breakup by viscous shear. The 

initial kinetics were better with G = 72/s at 5° C, but at the end, the resulting 

flocculation was worse due to breakage of floes. This was observed with all the three 

impellers, as shown in Figures 6.32 through 6J4. This phenomenon of floe breakup 

was noticed by several other researchers (Camp, 1955; Argaman and Kaufrnan, 1970; 

Tambo and Hozumi, 1979; and Michaels and Bolger, 1962a and b). Tambo and Hozumi 

(1979) and Argaman and Kaufman obtained an inverse relationship between maximum 

floe diameter and G. Tapered flocculation is a wise choice for minimizing the problem 

of floe breakup. From Figure 634 it is clear that better overall flocculation can be 

obtained even with smaller energy input, by varying the slow mixing intensity at 

different stages of flocculation. This is called tapered flocculation. At 23° C the 

flocculation was improved with the increase of intensity from 30/s to 60/s (Figures 635 
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and 6.36), but the improvement was not as great as that seen at 5° C. Tapered intensity 

from 60/s to 30/s at the later stage of flocculation gave almost comparable but slightly 

worse results in 30 minute turbidity reading (Figures 6.35 and 6.36), than the constant 

G of 60/s indicating a net positive particle growth with G = 60/s. This means that the 

floes grown with ferric nitrate coagulant at pH = 6.0 and temperature = 23° C with zeta 

potential around -10 mv are capable of withstanding a slow mixing intensity of G= 60/s. 

From Figure 6.15 it is clear that alum floes are much weaker than the floes 

produced by ferric nitrate (Figures 6J5 and 6.36). Under similar physico-chemical 

conditions, floe breakage was taking place at the later stage of alum flocculation even 

with slow mix G of 30/s. Tapering the slow mixing intensity from G = 30/s to 20/s 

improved the end results to a significant degree. This same phenomenon was observed 

in Figure 6.13 at pH = 7.8 and 23° C during alum flocculation with two different 

impellers. 

Even at cold temperature (5° C), the floes produced with ferric nitrate were 

strong enough to v^rithstand a slow mixing intensity of G = 48/s (corresponding to G = 

60/s at 23° C) at pH = 7.8 with zeta potential near -10 mv (Figures 6.32 through 6J4). 

But Hanson (1989) reported that the alum floes are much weaker at cold temperature. 

From current study it was observed that the breakage of alum floes took place during 

the later stage of flocculation with a G value of 30/s at 23° C (Figure 6.15). If the 

floes are weaker at 5° C, then the alum floes probably would break with a slow mixing 

G of 30/s or less at 5° C at the later stage of flocculation (no experiments were 

conducted with alum at 5° C). So an optimum combination of slow mixing intensity and 
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pattern should be chosen with several trial experiments for a particular set of 

experimental conditions depending on coagulant type, temperature, pH, mode of 

coagulation (A/D or sweep floe) and impeller type. Figure 6.42 demonstrates that the 

flocculation kinetics of kaolin clay using alum are substantially worse than the kinetics 

using ferric nitrate as the coagulant. The poorer performance by alum is confirmed by 

both flocculation index and turbidity readings. 

Figures 6.37 and 6J8 illustrate the effect of the opening size of the wire mesh 

impeller. It was hypothesized that the wire mesh impeller would produce small scale 

motions similar to grid generated motions used by Casson and Lawler (1990). These 

small scale motions generate a more homogenous turbulent flow field than the other 

impellers used in this study. It was expected that the smaller mesh size would 

produce the best flocculation kinetic results. However, the larger mesh sizes performed 

better at constant power input. This generated the concern that the contribution of the tip 

speed and large scale motions might dominate the flocculation performance. However, 

when the impellers with different size of opening were rotated at the same speed, 

turbidity removal improved moving from no mesh (frame only) to the 1x1 mesh to the 

3x3 mesh to the 8x8 mesh impeller (Figure 6J9). This indicates that the wire mesh is 

playing a role in improving the removal of the primary particles. At the same speed, the 

wires located at a particular distance from the center of impeller shaft for all the 

impellers are producing same velocity (proportional to angular velocity of the impeller 

and the distance of the wire from the center of the shaft) and velocity fluctuations at 

that particular location. The impellers with smaller openings are generating more such 
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velocity and velocity fluctuations between two locations (both in vertical and radial 

directions) than an impeller with larger openings. As a result, the probability of particle 

collisions increases. These local velocity and velocity fluctuations are effective for 

initiating contact during rapid mix and at the early stage of flocculation when primary 

particles are forming doublets, triplets, quadrupulates, and so on. In contrast, when 

operated at constant power input to the system, the impellers with smaller opening sizes 

had to be rotated at lower speed, which reduced the velocity and velocity fluctuations at 

those locations resulting in lower probability of particle contact and worse flocculation 

kinetics. When the floe particles grow to a much larger size, then the large scale 

motions bring those large particles in contact with other particles of similar or different 

size. These larger floe particles contribute most to increasing flocculation index 

readings. A smaller number of very large particles may produce relatively better 

flocculation index readings than very large number of intermediate sized particles even 

though the overall flocculation performance (less number of primary particles present) is 

better for the second case. This point is evident from Figure 6.39. The 8x8 mesh 

impeller with lower flocculation index readings achieved better turbidity removal than 

1x1 mesh and no mesh (frame only) impellers. Although the steeper rising limb of the 

flocculation index versus time curve indicated better flocculation results most of the 

time, it might not always reflect the actual flocculation efficiency evidenced by the 

turbidity removal. The overall flocculation efficiency is usually expressed as the total 

ntunber of primary particles removed or turbidity removed rather than by the formation 

of a few number of very big particles. 
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The turbidity readings produced by the 3x3 mesh and the 8x8 mesh impellers 

were almost identical at constant speed (Figure 6J9). It is possible that the reduction of 

opening size beyond a certain size did not assist that much in flocculation performance. 

Rather, it restricted the growth of floes after some time of flocculation by constricting 

their passage through the smaller openings, or that more breakup of floes occurred due 

to higher energy input and/or due to more frequent collisions with the larger number of 

wires present per unit flow area. From all the phenomena described above, it appears 

that the large scale motions arising from bulk flow (pseudo-turbulence) and generated 

by tip speed or effective radius are generating contacts between large particles when 

they have grown to a certain size, on the other hand, the small scale motions generated 

by local velocity and velocity fluctuations (true turbulence) are effective for contacts 

among primary particles. Wire mesh impellers achieve both of these; and the choice of 

particular opening size of wire mesh impeller and its operation pattern for optimum 

flocculation should be determined by experiment. 

6.3. What is Next? 

Flocculation research has taken a ride on a slow boat during the past several 

years. Prior to that, a significant number of research works were conducted, unraveling 

the mystery of the chemical aspects of the coagulation-flocculation process. Very few 

researchers have conducted research for understanding the hydrodynamic aspects 

associated with the coagulation-flocculation process. Thanks to Argaman and Kaufman 
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(1968, 1970) who opened the door of this new area of research, followed by Hanson 

and Cleasby (1990) and Casson and Lawler (1990) who tried to describe the 

characteristics and limitations of the turbulent flow field usually found in the 

flocculation reactor. 

This research was designed and conducted to advance further into this arena. 

From extensive literature review it was realized that a homogenous and isotropic 

turbulent flow field inside a reactor brings forth uniform particle destabilization and 

subsequent flocculation, and the degree of homogeneity and isotropicity depends on the 

intensity and/or uniformity of mixing. It was also found from literature and 

experimental observations that several mixing variables (rapid and slow mixing variables 

mentioned and discussed earlier) have a remarkable impact on flocculation kinetics. 

These mixing variables with several other physico-chemical variables lead to a large 

number of experiments that have to be performed in order to observe the impact of each 

mixing variable under each set of conditions, which is not possible within the scope of a 

dissertation. But this study opened the scope for a much broader field of flocculation 

research. Some of the areas that can be pursued are as follows; 

1. All the experiments performed here involved metal coagulants and most of the 

mixing variables were tested with ferric nitrate coagulant only. Study with polymeric 

coagulant will be a promising area of research to observe the impact of various mixing 

variables. Usually the polymers are high molecular weight compounds and they are used 

in small dosages. Variables like impeller geometry, rapid mixing intensity, pattern. 
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coagulant injection pattern, concentration of dosing solution etc. should influence the 

destabilization mechanism of particles (A/D or interparticle bridging), especially at cold 

temperature. Srivastava (1988) demonstrated that rapid mixing intensity and pattern had 

a dramatic impact on polymeric flocculation at both warm and cold temperatures. 

2. The effects of impeller geometry and other mixing variables have been tested only in 

one reactor size. It will be a promising area of research to observe and determine 

whether the scale has anything to do with the effect of various mixing variables on 

flocculation kinetics. Are the effects and their extent similar in all scales? If not, what 

will be the scale-up rules for various impeller geometries and other mixing variables? It 

will be helpful for the design engineers to design a flocculation unit based on batch 

reactor results, if these information are available. Clark et al. (1994) investigated the 

effect of scale on flocculation efficiency and found that flocculation efficiency tended to 

decrease as the reactor increases in size with constant power input and constant D/T 

ratio. But their research is not conclusive, so more research needs to performed in this 

area of scale effect. 

3. Only two sets of experiments have been performed to observe the effect of various 

paddle type impellers (mesh, modified stake and 2-blade stack). From these results, no 

performance difference was observed among these three impellers. It would be 

interesting to investigate their performance in other physico-chemical conditions, 

especially at cold temperature with polymeric coagulant. Similar research can be done 
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with different mesh sizes. Among the three sizes tested in three physico-chemical 

conditions, the largest mesh size (1x1 mesh) performed best in two cases at constant 

power input and performed worst at constant speed. More research needs to be done to 

determine the optimum opening size and its optimum operation pattern (rapid and slow 

mixing intensity and pattern) under various physico-chemical conditions. It is quite 

possible that a particular mesh opening size would perform best in a particular set of 

rapid and slow mixing intensity and pattern. It will be also be a worthwhile research 

area to measure the turbulence intensity produced by mesh impellers with various 

opening size with different speeds and energy inputs. 

4. An entire area of research can be opened v^ath grid generated turbulence in baffled 

flocculation. A number of wire meshes with various opening sizes can be placed at 

different locations of a baffled flocculator to observe the effect of grid generated 

turbulence on baffled flocculation. This can be observed under various physico-chemical 

conditions. 

5. Another area, probably the most promising area of research, can be opened with the 

title "Effect of various mixing variables on continuous flow flocculation" to determine 

the effect of the mixing variables tested in this study on continuous flow flocculation. 
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6.4. Conclusions 

The following conclusions can be drawn from this research: 

1. Different flocculation impellers deliver energy differently into the reactor. Paddle 

impellers such as the mesh and the modified stake impeller deliver energy into the 

reactor in a decentralized fashion (throughout the volume of the reactor), whereas the 

turbine impellers deliver power into the reactor in a centralized location. That is why the 

paddle type impellers consume more power at the same rpm than the turbine impellers 

(A 310 and 2-blade). The 2-blade stack impeller delivers power in a fashion somewhere 

in between these two extremes. 

2. The PDA instrument gave flocculation kinetics measurements that were consistent 

with the settled water turbidity readings in most cases. In those cases, a steeper slope of 

the flocculation index curve generated by the PDA instrument corresponded to better 

settled water turbidity readings at all settling times after flocculation. But, because there 

were some exceptions to this general pattern, the flocculation performance should not be 

judged only from flocculation index readings. The flocculation index results should 

always be verified either by residual settled water turbidity readings or by evaluation of 

the number of primary particles at different time intervals during flocculation. 

3. Impeller geometry was the most important mixing variable from an engineering 
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viewpoint. From this study it was observed that the paddle type mesh impeller 

performed far better than the turbine type impellers ( A 310 and 2-blade) under all 

conditions tested. The mesh, the modified stake, and the 2-blade stack impellers 

performed almost identically under the conditions tested here. It was also observed at 

cold temperature that the turbine type impellers (2-blade and A 310) could not produce 

as good results (both turbidity and flocculation index) with higher G as the 3x3 mesh 

impeller with lower G. 

4. When the 3x3 mesh and the A 310 impellers were compared, it was observed that the 

3x3 mesh impeller performed better than the A 310 impeller in both stages of mixing 

(rapid and slow). But the performance difference was more pronounced during slow 

mixing stage. From this observation it can be concluded that the better impeller (3x3 

mesh) performs better in both stages of mixing in a coagulation-flocculation process. 

This better performance by the mesh impeller is attributed to both better large scale 

motions (pseudo-turbulence) generated by larger effective radius and more intense, small 

scale, turbulence generated by the v^dres. The two smaller mesh openings studied gave 

better turbidity removal than the larger mesh, or frame only impellers. 

5. Both rapid mixing intensity and pattern had a remarkable impact on flocculation 

kinetics. An optimum value of rapid mix G was obtained for each set of conditions. 

This optimum value was different under different conditions tested in this study. With a 

constant dimensionless Gt value, a low intensity, extended duration, rapid mix pattern 
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proved to be more beneficial than the high intensity, short duration, rapid mix pattern in 

almost all the conditions studied. 

6. Other rapid mixing variables, such as coagulant injection pattern, concentration of 

dosing solution, number of ports of coagulant injection also showed some noticeable 

influence on flocculation kinetics. Slow injection, dilute dosing solution and multi port 

injection proved more beneficial than the pulse injection, concentrated dosing solution, 

and the single port injection respectively. 

7. Slow mixing intensity and patterns also affected flocculation kinetics. There should be 

an optimum slow mix G for each set of experimental conditions when constant G-slow 

mixing is adopted. Reducing the slow mix G as flocculation progressed (i.e., tapered 

flocculation) resulted in higher flocculation index as flocculation progressed and better 

settled water turbidity due to less danger of floe breakup. 

8. All the mixing variables tested in this study demonstrated a more pronounced effect 

on flocculation kinetics at cold temperature than at high temperature. Overall, cold 

temperature kinetics were much slower than the warm temperature kinetics. Ferric 

nitrate was more efficient in turbidity removal than alum under similar experimental 

conditions and the floes produced during flocculation with ferric nitrate were stronger 

than the floes produced during alum flocculation under comparable conditions (same 

temperatiu'e and similar zeta potential values) 
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APPENDEX 

Summary of physico-chemical conditions used in this study 

Figure 
No. 

Temp. Clay Cone, 
r C) (mg/1) 

Coagulant 
type 

Dose 
(mg/1) 

pH ZP (mv) IFI 

6.1 23 25 FN 2 7.8 -10 0.15 

6.2 23 25 FN 5 7.8 0 0.15 

6.3 23 25 FN 1 6.0 -6 0.15 

6.4 05 25 FN 3 7.8 -13 0.12 

6.5 05 25 FN 3 7.8 -14 0.10 

6.6 05 25 FN 3 7.8 -12 0.09 

6.7 05 25 FN 6 7.8 -4 0.09 

6.8 05 25 FN 1 6.0 -7 0.12 

6.9 23 25 FN 2 7.8 -9 0.14 

6.10 23 25 FN 1 6.0 -4 0.15 

6.11 23 25 FN 1 6.0 -4 0.15 

6.12 23 25 Alum 1.5 7.8 -7 0.13-0.16 

6.13 23 50 Alum 2.25 7.8 -13 0.18-0.22 

6.14 23 50 Alum 2.25 
10 
20 

6.0 -13 
+23 
+30 

0.17-0.21 

6.15 23 50 Alum 2.25 6.0 -12 0.16-0.18 
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6.16 23 50 Alum 20 7.8 +25 0.20-0.23 

6.17 23 50 Alum 4.5 7.8 -14 0.16 

6.18 23 25 Alum 3 7.8 -13 0.10-0.13 

6.19 23 10 Alum 4 7.8 -7 0.04 

6.20 23 25 FN 2 7.8 -15 0.10 

6.21 05 25 FN 3 7.8 -13 0.10 

6.22 23 50 Alum 2.25 7.8 -12 0.16 

6.23 23 25 FN 1 6.0 -6 0.15 

6.24 23 25 FN 5 7.8 -3 0.15 

6.25 23 25 FN 1 6.0 -5 0.15 

6.26 05 25 FN 6 7.8 -3 0.10 

6.27 05 25 FN 3 7.8 -13 0.10 

6.28 23 25 FN 2 7.8 -13 0.10 

6.29 23 25 FN 2 7.8 -12 0.10 

6.30 05 25 FN 3 7.8 -13 0.10 

6.31 23 25 FN 2 7.8 -15 0.10 

6.32 05 25 FN 3 7.8 -13 0.10 

6.33 05 25 FN 3 7.8 -13 0.10 

6.34 05 25 FN 3 7.8 -13 0.10 

6.35 23 25 FN 1 6.0 -4 0.15 

6.36 23 25 FN 1 6.0 -4 0.15 

6.37 23 25 FN 1 6.0 -6 0.16 
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6.38 

6.39 

6.40 

6.41 

6.42 

23 

23 

05 

05 
23 

23 
23 

10 

25 

25 

25 
25 

25 
25 

FN 

FN 

FN 

FN 
FN 

FN 
Alum 

1 

3 

3 
2 

2 
1.5 

7.8 0 

6.0 -8 

7.8 -14 

7.8 
7.8 

7.8 
7.8 

-13 
-15 

-15 
-7 

0.07 

0.17 

0.10 

0.10 
0.10 

0.10 
0.10 

Note: FN - Ferric Nitrate and IFI - Initial flocculation index 
Error in ZP measurement is t2 mv 
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